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Nabla Fractional Calculus on Time Scales
and Inequalities

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Here we develop the Nabla Fractional Calculus on Time Scales.
Then we produce related integral inequalities of types: Poincaré, Sobolev,
Opial, Ostrowski and Hilbert-Pachpatte. Finally we give inequalities
applications on the time scales R, Z.

2000 AMS Subject Classification : 26D15, 26A33, 39A12, 93C70.
Keywords and phrases: Fractional Calculus on time scales, Nabla Poincaré
inequality, Nabla Sobolev inequality, Nabla Opial inequalities, Nabla Os-
trowski inequality, Nabla Hilbert-Pachpatte inequality, fractional inequali-
ties.

1 Background and Foundation Results

For the basics on time scales we follow [1], [2], 3], [4], [9], [11], [13], [6], [7],
[10].
By [15], p. 256, for p,v > 0 we have that

T (CC _ s)y—l (S _ t)u-—l B (:U . t)ju-!-u—l
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where I is the gamma function.

Here we consider time scales T" such that T), = T.

Consider the coordinatewise 1d-continuous functions TLQ T xT — R,
a > 0, such that kg (t,s) = 1,

o (g / R T s, @)

¥s,tel.
Here p is the backward jump operator and v (t) =t — p(¢).
Furthermore for o, § > 1 we assume that

/ ( ) bt (8,2 (1) gt (7,0 () VT = o (2,0 (), (3)

valid for all u,t € T : u < t.
In the case of T = R; then p(t) = ¢, and hi (2,5) =
NU {0}, and define

—Sk
(tk!) ke Ny =

Notice that

Firag)® gt e
/s I‘(af+1)dT— T (a+2) = hat1 (¢, 5),

fulfilling (2).
Furthermore we observe that (o, 5 > 1)

CE—n) T (r—w)fT
w (e T

by () (t— )Pt
= B (a 75 ,6)_ = hatp1 (t:u) ’

dr

it
/ ha—1 (£, 7) hg_1 (T,u)dT =

fulfilling (3).
By Theorem 2.2 of [14], we have for k,m € Ny that

[ 00 (1,10) U = Bt 0. @

to
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Let T = Z, then p(t) = t—1,t € Z. Definet® :=1,tF :=t (t+ 1) ... (t + &k — 1),
keN, andby(‘))wehavehk(t 5) = L= 9" s teZ, keN,.

Here L Vi = zm-q
Therefore by (4) we get

to)k—}-m-f-l

- t—T—I—lET—tgmu t—
z( . )" ( )

L ml . (k+m+ 1)l

which results into

Lol b 5 (=it - £ 10
Z (k —1)! (mn—l)! T (k+m-—-1)

()

T=tp

confirming (3).
Next we follow [5].
Let a,a € R, define t* = F(rt.i';;"),tE]R—{ —~2,-1,0}, N, = {a,a%1,a%t
...}, notice Ny =%, 05 =0,t° =1, and f : N, — R. Here p(s) = s—1,
(s) =s+1, v(t) = 1. Also define

_nf (f.) — Z (t 4 (S});:L (S) ne N,

s=a

and in general

Vo) = Z“ gl s,

where v € R — {..., =2, —1,0}.
Here we set

We need

Lemma 1 Leta > -1,z > a+ 1. Then

T () 1 (I‘(a:—l—l)_ T () )

Te—a) (@+)\T(z—a) T@E-—a-1)




Proposition 2 Let o > —1. It holds

I
fsr(a+1)VT_r(a+2)’ b2 s

That is he, @ > 0, on N, confirm (2).
Next for u,v > 1, 7 < t, from the proof of Theorem 2.1 ([5]) we get that

L @—p@) T (s p ()T (= p())]
2T T(s) CD(pt+v)

where 7 € {a, ..., 1}.
So for t, iy € N, with ty < t we obtain

t

=7t T b T =t 7T
2 T (v) T(w Tp+y)

(6)

T=1g

that is confirming (3) fractionally on the time scale T = N,.
Notice also here that

b b
[rove=3 10,

t=c+1

So fractional conditions (2) and (3) are very natural and common on time
scales.

For o > 1 we define the time scale V-Riemann-Liouville type fractional
integral (a,b€T)

IO = [ o lp ) ()77, ¢
(by [8] the last integral is on (a,t] N T)

JLf (@) =1,
where [ € Ly (Jo,b) NT) (Lebesgue V-integrable functions on [a,b] N T, see
6], 17, [10), £ € [a, 8]\ T.
Notice J1f (£) = [ f () V7 is absolutely continuous in ¢ € [a,b] N T, see

(8-



Lemma 3 Let o > 1, f € Li{[a,b]NT). Assume that B (s,p (1) is
Lebesgue V-measurable on ([a,b] N TY; a,b € T. Then J2f € L1 ([a,b] NT).

For u < t; u,t € T, we define
fu =
e(t,u) = / P (&, p (7)) hg—1 (7,p(u)) VT
plu)

= v () ha1 (8 £ () Frp-1 (u, p (), (8)
where o, 8 > 1.
Next we noticefora, 8 > 1;a,6 € T, f € L1 ([, 0] NT), and ha-1 (s, p (£))
is continuous on ([a,b] N T)? for any a > 1, that

EF0)= [ Fas o)V [ T (r,p () £ )V
Hence
JEJBf (1) —l—ftf(u)s(t,u)Vu: JerBf (), Vie[a,dNT.

So we have the semigroup property

JeIBF (1) + ] £ () (0) B (8 p () B (s p () V= JEA 1 (8),
(9)

VteledNT, with a,b € T.
We call the Lebesgue V-integral

D(f,B,T,t) = [ £ (8) () Bar (8, p () Frpn (w,p () Vi, (10)

t € [,0]NT; a,b € T, the backward graininess deviation functional of
f € Li(a,bNT).

If T'=R, then D (f,a,8,R,t) =0.

Putting things together we have

Theorem 4 LetTy =T,a,b€T, f € Li ([0, NT); 0, 8> 1; Bai (5,0 ()
is continuous on ([a,b] N T)? for any o > 1. Then

JEJEF (8)+ D (fr B,T,8) = TP f (), (11)
VitelabdNT.



We make

Remark 5 Let 1 > 2 such thatm — 1 < p <m € N, i.e. m = [p] (ceiling
of the number), v=m—p 0 <V <1).

Let f € O ([a, b)) N'T). Clearly here ({10]) f¥" is a Lebesgue V -integrable
function.

We deéfine the nabla fractional derivative on time scale T of order p— 1
as follows:

VI @) = (T O = [ Falbp @) £V (12

ViteadNT.

Notice here that V*7' f € C([a,b] N T) by a simple argument using dom-
snated convergence theorem in Lebesque V-sense.

If p=m, then = 0 and by (12) we get

VI =T O =7 (). (13)

More generally, by [8], gwen that f¥" " is everywhere finite and ab-
solutely continuous on [a,b] N T, then fV ezists V-a.e. and is Lebesgue
V-integrable on (a,t)NT, ¥ t € [a,8] NT, and one can plug it into (12).

We have

Theorem 6 Letp >2, m—1<u<meN,v=m—pu; f€CJ}([a,b]NT),
a,b € T, T, = T. Suppose /};p_g {5, 0(f11, hy (s,p (%)) to be continuous on
([a, 8] N T)>.

Then

[EWALMﬂHWWﬂVT= (14)

577 @)y @) 6 p () s (1 p () Vit [ s p o) Vi ()9,

a

VteadNnT.

We need the nabla time scales Taylor formula



Theorem 7 ([2]) Let f e C3(T), meN, T, =T; a,b€T. Then

m—1 i
)= R0 /" @+ [ o) /T @V (5)
k==0 A
ViteebnT.

Next we present the fractional time scales nabla Taylor formula

Theorem 8 Let p > 2, m—1<p<meN, v=m-—yp; f € C(T),
a,beT, Ty =T. Suppose hy(s,p(t), hs(s,p(t)) to be continuous on
(la,b] N T)*. Then

FO) =S helt,0) f~ (@) + (16)
k=0

[ 57" @y () B e () o 1 () Vst [ o) Vi () O,
YitelabNT.

Corollary 9 All as in Theorem 8. Additionally suppose %% @) =0, k=
0,1,...,m—1. Then

AW =f®-D(fV ,p—Lv+1,T,1) (17)
= 7O~ [ £ w)w (@) s (6 () B (. () Vo
= [t Vi () I,

VielabNT.

Notice here that D (f¥",p— 1,7+ 1,7, t) € Cu(la,b)NT). Also the
R.H.S (17) is a continuous function in ¢ € [a,b] N T



2 Fractional Nabla Inequalities on Time Scales
We present a Poincaré type related inequality.

Theorem 10 Let p > 2, m—1<pu<meN, v=m—yu; f € C3{T),
a,beT,a<b T, =T. Suppose ’ﬁ#_g (s,p(1)), hs (s,p(t)) to be continuous
on ([a,b]ﬂT)z, and f¥" (@) =0, k = 0,1,...,m — 1. Here A(t) = f(t) —
D(f"",p-1,7+ l,T,t), t€la,b|NT; and let p,g > 1: i + -;— = 1

Then

flA(t)I"‘Vts(/:(/:

Next we give a related Sobolev inequality.

B (t,p(r))r’vf) % Vt) ([ s ) Vt) -
(18)

Theorem 11 Here all as in Theorem 10. Let r > 1 and denote

171, = ( / ror w)% . (19)

||A||rg([ab([

Next we give an Opial type related inequality.

Then

uca (o @) Vr)’ w) el o)

Theorem 12 Here all as in Theorem 10. Additionally assume that
lVﬁ: 1f ] is increasing on [a,b)NT. (21)

Then

o ([ (]

[1aeivits ol ves

s o) V1) Vf)% ([ wes oy w)%
@



1t follows related Ostrowski type inequalities.

Theorem 13 Let p > 2 m—1<p<meN, v=m—pu; f € CG(T),
a,beT,a<b Ty="T. Suppose H”Ag (s,p(t)), B (s,p (%)) to be continuous
on ([a,8)NT)?, and f¥" (a) =0, k = 1,...,m — 1. Denote A(t) = f () -
D(fY", p— 1,7+ 1,T,t), t € a,b]NT.

Then

== (L ([

Theorem 14 All as in Theoremn 13. Let p,q > 1:

b
A V-1 () <

Rurs G (0] V7) 9 ) 192 Mg @)
+ -lq; =1. Then

1
b

<

b
[ AOVi-f(@)

1 N,
1 b t e » 7 -
- ( L ([ s o] 97) 9 195 - (20
We finish general fractional nabla time scales inequalities with a related
Hilbert-Pachpatte type inequality.

Theorem 15 Lete > 0, p > 2, m—1 < p<méeEN, Vv=m-—y
fi € CB(Ty), a,by € Ty, a; < by, Typ = T; teme scale, 1 = 1,2. Sup-
pose Zﬂ)_z (85, 0: (), JFL(;} (si,p; (t:)) to be continuous on ([as, b N T))?, and
¥ (a;) =0,k=0,1,..,m—1;4=1,2. Here A;(t;) = f; (t)=D:(f¥", u—1,
T+ 1,T5t), 4 € e, ) NTi;i=1,2, and p,g > 1: ?—1,+ t=1

Call

F ) = /;tl (llﬁiﬂz (t1, 1 (ﬁ))DPVTh

for all t, € [a1,b1], and

G(t2)=/t2(

az

—~ q
B, (b2, 0 (72))]) V7



for all i3 € [ag,bs] (where E'{ﬂz, p; are the corresponding ﬁy_z, p to Ty,
i=1,2).
Then

/bl jb? (|A1 (t1)] 142 (ta)] Vi Viy <

e+ ) 4 G(;‘z))

1 1
by q b2 »
{by — ay) (ba — ag) (/ A\ (t1)1q vq) (/ |VE=L ()P wz) :
1 2 (25)
(above double time scales Riemann nabla integration is considered in the nat-
ural interative way).

3 Applications

I) Here T' = R case.

Let p>2suchthat m—1<p<meN, v=m—p, feC™{(al]),
a,beR.

The nabla fractional derivative on R of order i — 1 is defined as follows:

n—1 3% 41 p(m s 1 : v p(m
VIR0 = (P O = g | ¢ IO @ar 09

Vtea,b.
Notice that VA f € C ([a,b]), and A(¢) = f(t), Vt € [a,0].
We give a Poincaré type inequality.

Theorem 16 Let u>2, m—1<pu<meN, feC"(R), a,b€R, a <b.
Suppose f®) (a) =0, k=0,1,...,m—1. Let p,g > 1 :%—l—%: 1. Then

b . [bi— a)(#ml)q b " ’
A e e e e G ({;2 |

Proof. By Theorem 10. =
We give a Sobolev type inequality.

10



Theorem 17 All as in Theorem 16. Let v > 1. Then

{b— a,)’“‘g“'L%“L%

ifll. <

1 l‘lv§:1fl|q- (28)
Fp—1({(p~-2)p+1) ((#WQ)T_(_;JI_i)T

Proof. By Theorem 11. =
We continue with an Opial type inequality.

Theorem 18 All as in Theorem 16. Assume | V4, £ is increasing on [a, b].

/ F@O1VEf () dt <

1

(b_a).u‘“‘;“ ’ v -1 2q ?
. ple ) de) . (29
Tp-D[((e-2p+1)((r—2)p+2)]r </ e 1 0) ) )

Proof. By Theorem 12.
Some Ostrowski type inequalities follow.

Theorem 19 Let p>2, m—1<pu<meN, feC™(R),a,beR, a <h
Suppose f¥) (a) =0, k=1,..,m—1. Then

(b

<O gy (30)
STty Ve Heben

2 [ roe-1e

Proof. By Theorem 13. ®

Theorem 20 Here all as in Theorem 19. Letp,q > 1: % +2=1. Then
1 b—a) it )
‘5_—@ f F(&)ydt— f(a)| < ( 1) IV
‘ Pp—1) (n=1) (k—Dp+1)
(31)

Proof. By Theorem 14. =
We finish this subsection with a Hilbert-Pachpatte inequality on R.

1l



a,b; € R, a; < b;, fi(k)(ai) =0,k=0,1,...m—1;p,qg> 1:é-§—%=1.
Call

(t; = al)(#—Q)P+1

PO = TP (=Dt D’

Ifl € [61,51], and

(i~ az)(#—Z)qH
(C(e—1))" (e —2)g+1)

G (t;) =

f)g - [G.g,bg].
Then

[ (m ()l g, 4

sl F(;l) . G(gz))

by % ba %
(by — ay) (ba — az) U |velh (tl)]thl) (/ |Vel fa (t2)|?dt2) ;
i 2 (32)
Proof. By Theorem 15. =
1) Here T' = Z case.
Let u>2suchthatm—1<p<meN,v=m-p,abeZ a<hb
Hete f:Z->R, and f¥ )=V =Xy, {~1)* (7;:) fit—k).

The nabla fractional derivative on Z of order p — 1 is defined as follows:

p—1 o v41 m — 1 : P m
Ve 0= (O O =gy 2 G-,
(33)
VteE [a,00)NZ.
Notice here that v (t) =1,V t € Z, and
AR)=f@) - D(V"fp—-17+1,Z,)
R ICED M I L 39

u=a+1 I (,LL i 1)

Vi€ [a,00)NZ.
We give a discrete fractional Poincaré type inequality.

12



Theorem 22 Let p>2, m—1l<p<meN,abeZ, a<bh f:Z—R.

Assume V*f(a) =0, k=0,1,...,m — 1. Letp,q>1:jlj+%:1. Then
b
> 1A <
I=a+1
1 b t L
N - +1(*‘*2)P))( VAL (1) )
w3 (35,0 07) ) (B oo .
35

Proof. By Theorem 10. =
We continue with a discrete fractional Sobolev type inequality.

Theorem 23 Here all as in Theorern 22. Let r > 1 and denote

1l = (Z |f(t>r) N

=a+1

Then

Ak
5 [

b i

1Al < P(#l ) Z (Z (t—T-I—I)(‘T:Z)p)

t=o+1 \7=a+1

)II‘V - 36)

Proof. By Theorem 11. =
Next we give a discrete fractional Opial type inequality.

Theorem 24 Here all as in Theorem 22. Assume that | V%, f| is increasing
on [a,b] NZ. Then

S IAGNVEF ()] <

M - - _ (Ew—g)p % ¥ et 2% %
525 (8 (B ™)) (zemror)

(37)

13



Proof. By Theorem 12. =
Tt follows related discrete fractional Ostrowski type inequalities.

Theorem 25 Let p>2, m—1<p<meN,a,b€Z,a<b f:Z—R
Assume VFf(a)=0,k=1,..,m—1.

Then
1 b
e > AR -f(a) <
t=a+1
1 b £ e
. p—2 n—1
G —p) Bl 1) (tga;d (f;rl ¢ ; ks )) ”‘Ua* f”W'[a,b}HZ' (38)
Proof. By Theorem 13. =
Theorem 26 All as in Theorem 25. Let p,q > 1: i + % = 1. Then
1 b
P > A@-fle)| <

t=atl

b t - N3
i | 20 (3 et 09 ) 195

t=a+1 \7=a+1
(39)

Proof. By Theorem 14. =
We finish article with a discrete fractional Hilbert-Pachpatte type inequal-

ity

Theorem 27 Let e > 0, p > 2, m—1 < p<meN;i=12 fi:
7 — R, a;,b; € Z, a; < b;. Suppose V*fi(a;)) = 0, k = 0,1,..,m — 1.
F i 7L i— g =z
Here A; (t:) = fi () = 30 _o (V7F () S350 —, V & € [a3,00) NZ;
p,q>1:%+%:1.
Call ) =)
1 i
(tl S 1) i
F(tl) = ; 3
2. (C(p—1)7

T1=a;+1

14



v t1 € [G.l,OO)ﬂZ, and

B 2 (tz—’f“z—%-l)(”__i)q
6= 2 -0y

To=az+1

¥ iy € [ag,00) N Z.
Then \ .
- AL ()] Az (82)]

> <
(c+ 7l 1 )

ty=a1+1iz2=a2+1 q

by

(bl—ﬂl)(bz'“az)( > |velh (fi)lq) L Z |V{:;1f2(t2)|p) :

ti=ai+l tz=az-+1
(40)

Proof. By Theorem 15. ®
We intend to publish the complete article with full proofs elsewhere.
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Schur and matrix theorems with respect to Z-convergence

A. Boccuto! X. Dimitriou! N. Papanastassiout

Abstract

Some Schur and basic matrix theorems with respect to ideal convergence are proved. Moreover

some examples are given.

1 Introduction.

The theory of convergence with respect to ideals was introduced in [11] and is deeply studied in
the literature, in particular in problems concerning limit and integrals. Note that, in general, ideal
convergence is strictly weaker than ordinary convergence (see [11]).

Here we present some versions of Schur-type and basic matrix theorems in which the existence of
the "pointwise” limit measure is requived only with respect to the convergence generated by a fixed
P-ideal . Note that the ideal Z; of the subsets of the natural numbers having zero asymptotic density
is a P-ideal (see [11]), and that Zy-convergence coincides with the so-called ”statistical convergence”
(see [9]).

We prove a Schur-type theorem with respect to the given ideal, and we show by a counterexample
that the existence of the ”Z-limit” measure, even when it is equal to zero, is not enough to get the clas-
sical uniform (s)-boundedness. Furthermore, we give some examples concerning the relations existing

between the classical convergence and Z-convergence when the involved ideals are not maximal.

2 Ideal limit theorems for measures

For the following see also [4, 6, 7, 11, 12].

Definitions 2.1 (a) Let X # 0 be any set. By P(X) we denote the powerset of X.
(b) A family T C P(X) is called an ideal of X iff AUB € 7 whenever A, B € T and for each A€ T
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and B C A we get Be L.

(c) An ideal T is said to be non-trivial iff T # 0@ and X ¢ .

{d) A non-trivial ideal T is said to be admissible iff it contains all singletons.

(e) An admissible ideal T is called a P-ideal iff for any sequence (A;); in I there are sets B; C X,
J € N, such that the symmetric difference A;AB; is finite for all j € N and Cj Biie T

=1

(f) Let now I be any fized admissible ideal and F = F(I) = {X ~ 1 :1 EJ_’[} be its dual filter. A
sequence (Tn)n in R Z-converges tox € R iff foralle >0, {neN: |z, —z| > e} € Z. In this case
we write T — limy, ©,, = x.
(9) A sequence (zn)n in R is T-Cauchy iff for each € > 0 there exists g € N such that {n € N :
|£n — 24| > €} € L.
(h) We then define T — _Ozo:l:cj =7 —lim, i{ r; and I — £ = {(;L',,,).,,,, ERN: T - i laj| € F}
(i) A sequence (zp)n m;R T*-converges to]r.c € R iff there exists A € F(T) with iii’n,i&—A Tn = T. Then
we write [* — lim, z, = .
(5) If T is an ideal of N?, then the real-valued double sequence (wij)ij Z-converges to = € R iff for all
>0 {(i,7) € N?: |z;; — x| > e} € Z. Then we write T — lim; j z;; = .
(k) The double real-valued sequence (z; ;) ; ts called Z-Cauchy iff for all e > 0 there ezists (p,q) € N
such that {(i,7) € N? : |z;; — wpq| > e} € L.

From now on let X be any o-algebra and T any admissible rdeal of N.
(1) A finitely additive measure m : ¥ — R is scid to be I-s-bounded iff for every disjoint sequence
(Hp)n in X we have T-lim, v(m)(H,) = 0, where v(m) denotes the semivariation of m.

The finitely additive measures m; : ¥ — R, j € N, are called uniformly T-s-bounded iff Z-
lim,[sup; v(m;)(Hyn)] = 0, whenever (Hy)n is a sequence of pairwise disjoini elements of X.
(m) The finitely additive measure m : £ — R is said to be T-c-additive iff for every disjoint sequence
(Hp), in X we get: I—limnv(m}( Ej Hg) =B

The finitely additive measures ?@j X = R, jeN, are called uniformly Z-c-additive iff for each
disjoint sequence (Hy), in X we have T-lim,, [supj v(m;) (ijﬂ He)] =

Examples 2.2 (a) Let Zp;;, = {A € N: Ais finite}. Then Zy;, is an ideal of N and ZLyin-convergence

coincides with the ordinary convergence.

(b) Let A C N. We denote by d(A) := lim, Ew (if this limit exists in R) the natural
or asymptotic density of A. We set Zy = {A C N : d(A) = 0}. Then Z, is an ideal of N and Zy-

convergence coincides with the statistical convergence (see [8]).

(¢) Zpin and 7, are well known cases of P-ideals (see [4, 11]).

Remarks 2.3 (o) Since R with the usual metric is complete we have that o [double) sequence is

2



T-Cuuchy iff it is T-conwergent {for o proef see [4, 6, 12}).
Y q { ! ;
(b) By Example 2.2 (a) and Definition 2.1(1) we get thot Ly,-s-boundedness of a measure coincides
with ordinary s-boundedness, uniform-Lg,,-s-boundedness of a measure sequence coincides with the

ordinary uniform-s-boundedness and similarly for the a-additivity notions (Definition 2.1(m)).

Proposition 2.4 If lim, z, = z, then T — lim, z,, = x. Moreover, if (zn), 15 a monotone sequence

in R and © € R, then T — lim, x, = z if and only if im,, z, = z.

Proof: The first statement is obvious since 7 is an admissible ideal (see also [10]). We now turn to
the second statement. It is enough to prove the "only if” implication. Without loss of generality,
assume that (z,), is increasing. By hypothesis, for all £ > 0 there exists an integer n* € N with
02—z, <&

By monotonicity we get: 0 < z — 1z, € x —z,» < € for any n > n*. So the sequence (z,)n

converges mouaotonically to . This concludes the proof. O

Proposition 2.5 7 — ¢! = ¢l
Proof: Immediate from Proposition 2.4.

Proposition 2.6 Let T be a P-ideal and {x,)n be a sequence in R, such that T — lim, z,, = =z € R.

Then there exists a subsequence (Tn,)q of (Tn)n, such that imgz,, = .

Proof: See {11, Theorem 3.2].

Proposition 2.7 The Z*-convergence of sequences implies always the T-convergence. Moreover, if

(zn)n s a sequence in R, T-convergent to £ € R, und T is a P-ideal, then (x,)n 1*-converges to &.

Proof: See [11].

We now prove the following:

Proposition 2.8 Let (z;;);; be a double sequence in R, T be any P-ideal, F = F(I) be its dual
filter, and let us suppose that T — lim; z; j = x; for every j € N.

Then there exists By € F such that limpep, Th; = z7 for all j € N.

Proof: Since Z is a P-ideal, by virtue of Proposition 2.7 we get Z* — lim; z; ; = a; for every j € N.

Hence there is a sequence (4;); in F such that lim;ea; 757 = x; for all j € N. As T is a P-ideal, there
o0

is a sequence of sets (5;); in F such that A;AB; is finite for all j € N and By = ﬂ B; € F. Since
j=1

limjea; @i ; = x; for all j, then we get also lim;ep; ;5 =z forallj. Let Bg={p1 < ... <pp <...}

and choose arbitrarily j € N: then, since By C Bj, in correspondence with & an integer /o = h(j) can

be found, with the property that |v,, ; — @;| < € whenever h > h. This concludes the proof. O

Equivalence between (uniform) o-additivity and (uniform) Z-co-additivity is an immediate conse-
quence of Proposition 2.4. We now prove this result concerning s-boundedness: an analogous one can

be given for uniform s-boundedness.



Proposition 2.9 Let T be a P-ideal. Then every measure m is I-s-bounded if and only if it is

s-bounded.

Iirst of all, note that s-boundedness implies always Z-s-boundedness, since usual convergence implies
I-convergence (see [11]). Concerning the converse implication, let (F,), be any disjoint sequence in
A, and pick any subsequence (H,,)s of (Hp)n- Since, by Z-s-boundedness, we have Z-limg m(H,,, ) =
0, then by Proposition 2.6 there is a sub-subsequence (Hn_%)k of (Hp,)n with limg m(Hmk} =
0. By property (U) of the ordinary convergence (see [11]), we get lim, m(/,) = 0, that is the
assertion. O

We now give some versions of the Schur lemma with respect to the ideal convergence.

Theorem 2.10 Let m; : P(N) = R,.% € N, be a sequence of positive o-additive measures, T C P(N)
be a P-ideal. Suppose that mo{E) := T — lim; m;(E) exists in R for every E C N, aend that mg is
o-additive on P(N}.

Then there exists A € F(Z) such that lim; (sup;c 4 mi(H;)] = inf; [sup;c 4 mi(H;)] = 0, where
Hi:={4,7%1,...};9eN.

Proof: Let (Hj); be as in the hypotheses: note that H; | @. For each j € N, put C; := {j}. Since
1 is a P-ideal and we deal with only countably many "objects”, there exists a set A € F(I) with:
lim;eq my(£) = mo(E) for every set F belonging to the algebra £ of all finite and cofinite subsets of
N; limg m;(Hy) = 0 for all 7 € NU {0}. We claim that each map m;|z, admits a countably additive
extension m; to P(N), and that such extension is the unique finitely additive map, defined on P(IN)
and agreeing with m; on £y,

For every ¢ > 0 and P C N set

??'-'?;(P) 1= sup m,;(UjEp.an Cj) = lim mi(UjEpjjgn Oj).
n T

1t is easy to check that m1; is an extension of m;. Moreover, if m; is any other extension of m;, we
have:

mi(P) 2 sup mi(Ujep,jzn Cj),
by monotonicity of m;;
mi(P) = mi(Ujepj<n Cj) + Mi(Ujepjon C;) < mi(Ujepj<n Cj) + mi(Hpy1)
for all » € N. Thus we get:
0 < mi(P) — mi(Ujepj<n Cj) < mi(Hnir)
for all n € N. As m;(H,) | 0, we obtain
mi(P) = lim mi(Ujepj<n Cj) = mai(P),

which proves the claim about m;.



We now prove that mg(P) = lime g m;(P) for every P € P(N). For each £ > 0 there exists kg € N
such that mg(H,) < £ whenever k > ky, since the "limit” measure myg is positive and o-additive.

Moreover, there is ig € A, ig = %o(g, ko) such that for any i € A, 7 > i,

|
I ; 5
m; U G} -mo U Gl <e Imi(Hgpr) — mo(Hige) S €

j<ko jEP i<kojer /|

Thus for each 1 € A, i > ig, we get:

' /
0 < |mi(P)—mp(P)] < }mi U Cij | —mg ( U Gy i+
| \Jshojer j<koger |
A
+ @l U cj) vl UG
i>ko,jEP j>ko,jEP
< e+ |mi(Higr1) — mo(Higr1)] + 2mp(Hypr1) < de.

Therefore lim;e 4 m;(P) = mp(P) for all P € P(N), that is the claim.

Let now N D A; | f. It is not diflicult to show that there is a subsequence { Ay, )g>2 with 77;(A4;, ) <
m;(Hy) for any i and k € N. Indeed, if there is go € N with A; D C) for s > g9, then it follows easily
that m;(C1) = 0 for all i € NU {0}. So, in this case, we get: m;{As) = mi(As \ C1) < m;(Hs) for all
5> g2 and ¢ € NU {0}, Otherwise there is I3 > 1 such that 4;, C Hj, and hence m;(A4;,) < m;(Ha)
for all 4. In any case, for at least an index sy and tor any ¢ we have: m;(4,,) < m(Hy).

At the following step, we get still two cases. If there is a positive integer ¢z with 4, D C; U Cs
for all s > g3, then m;(Cy U Cy) = 0 for all i. Therefore in this case, for each s > g3 and j € N,
mi(As) = mi(As \ (C1 U Cy)) < mi(Hz). If not, then there is I3 > sy with A, C Hs, and so
mi(Ay,) < mi(Hs) for all 2. In any case, m;i(Ay,) < my(Hs) for at least an integer s3 > s and
for all . Arguing by induction, we get that to every & > 2 there corresponds an element A, with
m;i(As, ) < my(Hy) for any 4, and 55, < sgyy for all £ > 2. This proves the claim.

Thus we get:

D irfzfﬁﬂ-(Ak) < il%f mi(As,) < iréf mi(Hi) =0

for each 4. Hence the maps m;, w ¢ N, i > 0, are o-additive on P(N). By the classical Schur
lemma, the mappings m;, i € A, are uniformly o-additive on P(N). Hence, lim; [sup;c 4 mi(H;)] =

inf; [supieq my(H,)] =0. O
We now prove the following improvement of the previous resuls:

Proposition 2.11 Let (m;);>0 be a sequence of real-valued o-additive bounded measures, T be any
admissible ideal, and suppose that there 1s a set A’ C N, A" € F(I), such that

(A) -~ mfsup v(m)({7,5 +1,...})] = lim [sup v(m:)({s,5 +1,...})] = 0.
7 igA’ T odieAr
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If furthermore T — lim; m;(H) = mgo(H) for every H C N, then there is a set A € F(I) with the
property that lim; miea(H) = mo(H) uniformly with respect to H C N, and moreover

€A

lim fsup [ > mi({5}) - mo({5})| | | =0.
¢ \IT

Proof: First of all observe that, thanks to Proposition 2.8, from pointwise Z-convergence of (m;); to
mp we obtain the existence of a set A” belonging to F(Z) {the dual filter of Z) such that to every

e >0 and h € N there correspouds ig € A” such that

Dotmi({a)) —mollaDl €3 5 <Y o = (1)
g<h

q=h g=1

L=

whenever 1 > 1y, 1 € A”.
Choose now arbitrarily € > 0. By virtue of property (A) and o-additivity of mg there is N* € N

with
(2)

forany V > N* and i € A’U{0}. Let now A := A'N A”: since F(Z) is a filter, we get that A € F(Z).

Moreover, let 9 = io(5, V™) be the integer associated with § and N*, whose existence is guaranteed
by (1). Thus we have, for each i > i, i € A and H C N:

v(m)({N+1L,N+2,...}) <

WM

0 < |mi(H)—mo(H)| < |mi(HN{L,..,N*}) —mo(HN{1,..,N*})| + (3)

* * ¥ £ E &

+ v(mu)({N*+ LN +2,. ) +v(m)({N* +1,N* +2,.}) < gt i - =&

From (3) we get uniform convergence of (m;)iea to mg with respect to I C N, that is the first part
of the assertion.

In order to prove the last part, let v : P(N) — R be the counting measure, and for every i € Nu{0},

7€ Nset: fi(j) =mi({j}). Then for each H C N we get

[ dv=3" 56) = ma(a).

R jeHd
Observe now that uniform convergence of the sequence (m;);c4 to mp is equivalent to convergence of
the involved integrals uniformly with respect to the parameter H which varies in P(N). Proceeding
analogously as in [3, Proposition 3.9], we get convergence in L' of (fi)ica to fo, and therefore we

obtain the last part of the assertion. 0

3 The basic matrix theorem

We begin with the following lemma, which deals with exchange of limits with respect to I-convergence
and holds without assuming necessarily that the involved ideal is a P-ideal (for the classical version,
see [8, Lemma 1.7.6]).



Lemma 3.1 Let (2;;)i; be a double sequence of real numbers, T be any admissible ideal 1n N, F be
its dual filter and K be any fized element of F. Set T x T := {Dy x Dy : Dy, Dy € T}. Suppose that

(i) T—limgz;; =y; ewists in R for all j € N.

(ii) T — lim; [sup;ep zij — i) = 0.

Then the following results hold true.

(iii) There exzists in R the limit a := T — lim; y;.

(iv) There ezists in R b:=7 — limy; ;.

(v) There exist an ideal J C P(N X N) andc € R such that Z x I C J and J — lim; ; z;; = c.
(vi) There exists in R d :=7 — lim; z;;.

(vil) We get: a=b=c=d.

Proof: First of all note that, by arguing analogously as in the proof of Proposition 2.8, by (i), to
every € > 0 and j € N there corresponds Dy € 7 with |z; ; — y;] < € whenever ¢ € D;.
Moreover, by (ii), for every € > 0 there is D € 7 such that

{gi5 —us] <e for allj ¢ Dandic K. (4)
We now prove (v). Let jp := min(N\ D). Then by (4) we have:
lzij, —zil <e foralliec K. (5)
By (4) and (5) we get that
|zij — xijyl £ 2¢ forall j¢€ Dandic K. (6)
By (i) we have the existence in R of the limit Z — lim; ; j, = yj, and so there is D;; € Z such that
1Zijo — ¥iol <€ forallig Dy, i€ K. (7}

Let ip := min(N \ Dj,). Then by (7) we get:

%040 =~ Yial < € (8)
By (7) and (8) we obtain:
oo = Tl £ 26 forallig Dy, i€ K. (9)
By (6) and (9) we get that
|5 — Ziggol £4€ forallig Dy, i€ K and j ¢ D. (10)
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Let now ¢’ & Dj,, v’ € K, j' € D. Then by (10) we have:
lIiO:jo T xi’,j"l S de. (11)

Let §$:= (D U(N\K))xDeZxTZand
k
o v {U (Ag X By): Ay, Bs€Z forall s =1,...,k; keN}.
s=1

Then 7 is an admissible ideal in N x N and S € 7. By (11) we obtain that
|z ; — x| < 8¢ forall (3,7), (¢,7) € S, (12)

and by {12) the double sequence {z; ;); ; is J-Cauchy. By Remark 2.3(a), the limit ¢ := J —lim; j z; ;

exists in R, Thus (v} is proved.

(vi) With the same notations as in the proof of (v), if ¢, ¥’ € D;, UDUK € Z, then from (10) and
(11) it follows that

s —wirp| < Be.
Thus the sequence (z;;); is Z-Cauchy, and hence the limit Z — lim; z;; exists in R and is equal to c.

We now prove (iii). By (v), for any € > 0 there it § € J with the property that

|zij —cl €e forall (¢,5) &€ S. (13)

ko
Bt :§ = U(AS % Bs), where kg € N and A,, Bs € Z for all s = 1,...,ky. Moreover, by (i), for every

s=1
J € N we have the existence of D; € Z with

|zi; —yil <& foralligD;. (14)
So, for each 1 ¢ (Ufil AS) UD;eZand 5 & (Ui”f’__l Bs) € 7, by (13) and (14) we get:
lyj — el < lwi; —ysl + |y — ¢ < 26 (15)
By (15) we obtain that the element a as in {iii) exists in R and a = c.
(iv) Similarly as in (iii).
(vii) It is an easy consequence of (iii), (iv), (v) and (vi). O
We now turn to the basic matrix theorem.

Theorem 3.2 Let ()i be a bounded double sequence in R, and I be a P-ideal of N. Assume that:

(i) Z—lim;z;; =: z; exists in R for all j € N;



(ii) Z - lim;z;5 =0 for alli € N;
(iii) for ewery infinite subset B C N there 4s an infinite subset C C B such that the sequence

77— g T;j | 18 convergent.

jec i

Then the following hold:

(I) There exists I{ € F = F(I) such that T — lim;[supjef @iy — 25|} =0

(IT) Z - lim; z; = 0.

(II1) If J © P(N?) is the ideal of N? generated by the finite unions of the Cartesian products of the
elements of I, then J — lim; j ;5 = 0.

(IV) Z — lim; 2;; = 0.

(V) There is A € F = F(Z) with T — lim;{sup;c4 |zi5]] = 0.

Proof: (I) First of all note that, by virtue of (ii) and Proposition 2.8, a set K € F can be found,

with

lim z;; =0 16
T (16)

for all 7 € M.
From (16) it follows that for any £ > 0 and ¢,k € N there is s = s(i, k) € K with the property that

firg s — 2yl <26 forallj >4,7j€ K. (17)

Moreover, by (i) and Proposition 2.8 again, there is A € F with limjea z;; = z; for all j € N.
Let A = {qg1 < ... < q; < ...}: for the sake of simplicity, put g¢; = ¢ for all . Proceeding
analogously as above, we have that for every ¢ > 0 and s € N there is p € N with

S

Z Imtj_$3|<zggzg—s for all 7 > p. (18)

JEK j=1

For all € > 0 and s € N there is p = p(s) € N with

5

3wy —angl <2e foralli A2 p. (19)
jek j=1
We will prove that
hm [sup |z;; — z;]] =0, (20)
€d ek

where K is as in (16). This, thanks to Proposition 2.7, is enough to prove (I).



Before proving (20), we claim that for every € > 0 there exists < € A such that the set
{k € A:sup |z;; — z ;| > 4¢€} (21)
jEK
is finite. Otherwise, there is € > 0 such that for every ¢ € A there exist kK = k(i) € 4, k > 1 and

j & K with
{Zis —xp4| > de (22)

Choose arbitrarily 7; € A: in correspondence with i; there exist &1 = &(i1) € A, k1 > 4 and j; € K

with
i1 51 — Thy 5| > 4e (23)
Let 51 := s(41, k1) € K be as in (17): without loss of generality, we can choose s; > j1. We get
]Iihj i :Ekl,ji‘ < 5/21

whenever j > 51, 7 € K. Let p; := p(s)) be as in {19). We obtain

§1
Z [opr == mgg]l 2 dorall pooz Py (24)
jeK j=1
Let now iy € A, with 45 > p;. Without loss of generality, we can choose is € {k(i) : 7 € N}. In

correspondence with 45 there are ky = k(i) € A, ko > i, and j» € K such that
iw'iz.jz = wkz,jzl e (25)

Note that, by construction, 73 > s1. Let sy := s(is, k2) € K be as in (17): without loss of generality,

we can choose s9 > 72. We get
et [Ty 4 = Ty 3 10,5 — Tha 3]} S 672

whenever j > 59, 7 € K.

Proceeding by induction, we get the existence of four strictly increasing sequences: (i,), and (k)
in A; (jr)r and (s,)r in K, with the properties that i, < kr < 4,119, Jr < 80 < jou1 forall r € N;
ir € {k(7) : 1 € N} for any r > 2, and:

Sr—1

(a) Z [ —mp sl <28
JEK j=1
(b) i'r‘:i,.,jr b wkmjrl fio 45,

() |8 trs, = g} & 25/2’1 =cforallr > 2and h € N.
h=1
" By virtue of (iii), in correspondence with € and B := {j, : r > 2} there exist C C B and ng € N

such that

L z (%i,,5 — Th.5)| L € (26)

JjeC
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for all 7 > ng.

Let u := 2 sup; ; |z; |- By (a), (b) and (c), we get:

3 |Bieg ~Ehegl & > |s,.5 — T3l + > |Tirj — kgl + |Zirge — Tkl
jec e B FEC, T r1 1}
< 2e+etu=3ctu (27)

. — . % 2 -
for r > 2. Therefore, E |%i,.; — %k,.;| € R and a fortiori E (€i..; — Tk,j) € R for such r's.

jed jecC
Moreover, by (iii), Z — Z(:Ei"‘j -z, ;) € R, and so
jec
=) (g = Theg) = D (@irj — L5 ER, 72 2. (28)
jEC JEC

From (26), (27) and (28), if r > ng and j, € C then we have:

; 5 Bt
[Ty e = i gl S Z{iﬂz‘,.j = Tp,5)| } [Tip5 — ko il + Z |Tiri — Tk, 5]
jec JECIE{f. wiir-1} JjeCje{jrir..}
= |- (Birg — Thog)| + 50 | i — Tl + L |55 — ke g
jec JECGE(f1,mir—1} FECFE{drt1,}
< e42e+4e=4e. (29)

So (29) holds for infinitely many indexes r. This contradicts (22) and proves the claim (21).
We now prove (20). From (21) it follows that the family {(z;;)ica : 7 € K} is Zs,-Cauchy
uniformly with respect to j € K. So, the family {(x; ;)ica : J € K} converges uniformly with respect

to j € K, and thus we get (20). This ends the proof of (I).

(1) We have just proved that 7 — lim;[sup,cx |@:; — @;|] = 0, and by (ii) we know that T —
lim; x; ; = 0 for every 4 € N. Thus by (iii), (iv), (vi) and (vii) of Lemma 3.1, interchanging the role
of the variables ¢ and j, we get that Z — lim; z; = 0, that is (1I).

(IIT) it is an immediate consequence of (I), (IT) and Lemma 3.1.

(IV) Tt follows from (I) and (vi) of Lemma 3.1.

(V) In the proof of (I) we proved the existence of two elements A, K € F such that

lim [sup |&s; — ;|| = 0. (30)
€A jeg
Moreover, by (II), Z — lim; z; = 0. Since 7 is a P-ideal, by Proposition 2.7 we get: Z* — lim; z; = 0,
that is a set Ko € F(Z) can be found, with limjex, z; = 0. Let K’ := K N Kp: then K’ € F(Z). In
order to prove the assertion, thanks to the first part of Proposition 2.7 it is enough to show that
lim [sup |x;;]] = 0. (31)
A

JEK' ic

4
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To this aim observe that by (30), for £ > 0 there exists ¢ € A with |z;; — ;] < £ whenever i € A,
i>iand j € K (and a fortiori j € K’). Since limjep, z; = 0, to every € > 0 there corresponds
j € Ko such that |z;| < e for all j > 7, j € Kp (and a fortiori j € K’). Note that, without loss of
generality, the integer 7 can be taken in K.

Since (ii) holds, proceeding analogously as in the proof of (I) we get: limjec g 2;; = 0 for all ¢ € .
So, foreverye >0and i =1,...,i—1,1 € A, thereis j; € K’ with |z; ;] < ¢ whenever j > j;, 7 € K"

Let now j* := max{7, MaX;_; 7 1ieA ji}, and choose arbitrarily i € A, j € K, j > 5*. 1fi > 1,
then |z; ;| < |@; 5 — 5] + ;] £ 92¢. If i <1 -1, then |z; ;| < . This proves (31) and hence (V), and

concludes the proof of the theorem. O

Remark 3.3 Theorem 3.2 extends to the context of P-ideals {1, Theorem 4], which was formulated
for T= T,
Moreover note that, if in the hypotheses of Theorem 3.2 we keep (i) and (iii), fix £ € F and

replace (ii) with the condition
}g}} ;=0 forallieN, (32)

then the thesis of the theorem continues to hold, and the set K for which (I) is fulfilled is just the
element K of F fixed a prioriin (32): indeed, it will be enough to repeat the same arguments of the

proof of 3.2. In particular, if we take K = N, (ii) becomes
(ii") limjz;; =0 for allz € N.

Note that, by arguing analogously as in the procf of 3.2 it is possible to prove that (i), (ii’) and (iii)
imply that

(I') T - lim;[sup;ep |zi5 — ;] = 0.
Similarly, if in 3.2 we keep (ii) and (i), fix A € F and replace (i) with
31613} Tij; = Tj for all 7 € N,

then the set A for which (V) holds is just the mentioned element A of F. In particular, if we choose
A =N, (i) becomes

(") lim;z;; = x; exists in R for all j € N.
Note that, by proceeding analogously as in the proof of 3.2, we can prove that (i’), (i) and (iii) imply:
(V) I~ limj[sup;ey |2i5]] = 0.

Remark 3.4 We now claim that Theorem 3.2 Lolds (with £ = N) even if we assume (i), (ii’) and

replace condition (iii) with the following hypothesis:

12
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o
Z - § Lp,j
Jj=1

h

T-converges.

We now sketch only the proof of (I), since the proof of the other parts is similar as above.
Let us define the sequence (k;); by setting k; = k(4), ¢ € N, where k(¢) is as in (22). By (iii’) and

Proposition 2.6 there is a subsequence (k;, }s of (k;); such that the sequence

co
I == E :I"f\:.,:s J
=1

converges in the ordinary sense. In the argument leading to a contradiction, we take the natural

s

numbers i, k., in such a way that i, € {k;, : s € N} for each r > 2 and k. = k(i) for any r € N.

Note that, proceeding similarly as in (28), it is pussible to prove that
co o0
T— Y (Bi5 —~%reg) = Z(xir,j ~ Tk ) ER, T22 (33)
i=1 =1
From (iii"), the particular choice of the 7,’s, &k,’s and (33), there is ng € N, such that

oc

Z (i g Fhpg)| £F

j=1
for all » > ng. So we obtain:
>3

i = Thoge) <D @ing = B+ D Wig = Teglt D %6 — Thy
Jj=1

JE{F1,eerdr—1} F€{jrs1,0}
< e+2e+e=4eg

getting a contradiction with (22) and proving the claim.
It is not difficult to find an example of bounded real-valued double sequence (x; ;); 5, such that for
every 3 C N and for each strictly increasing sequence (np)y the sequence Z Tiid is bounded.
JEB 5

If 7 is maximal, then such sequences admit always Z-limit (see also [4]).

Remark 3.5 Note that, if we assume the continuum hypothesis, then we get a large class of maximal
P-ideals (see [10]).

Remark 3.6 Observe that, if the involved ideal 7 is not maximal, then the existence of the classical
limit I of any bounded real-valued sequence is equivalent to the existence of the Z-limits of all its

subsequences, and they coincide all with [. Indeed, the following result holds:

13



Proposition 3.7 Let (a,), be any bounded sequence in R, Z be any admissible not mazimal ideal
of N, and suppose that Z — limy, a;, ezists in R for each strictly increasing sequence (ip),. Then the

ordinary im,, a,, exists in R.

Proof: First of all we claim that, if Z is any not maximal ideal of any infinite set X, then there exist
two disjoint elements By ¢ Z, Ba € T whose union is X. Otherwise, for each partition of X formed
by two elements (5;, By) of Z, then either By or Bs belongs to Z. If By € T, then B, ¢ T, otherwise
X should belong to Z, and hence Z should be trivial. Similarly, if By € Z, then B ¢ . Thus the
dual filter F(Z) associated with Z should be an ultrafilter, and hence Z should be maximal. This
leads to a contradiction and proves the claim. Moreover note that, since Z is admissible, then every
finite subset of X belongs to Z, and hence the two involved sets By, B turn out to be infinite. Thus

we can represent them in the form
Bl:={i1<i7_<...<tj<...}, Bg::{T1<T2<.‘.<Tj<...}. : (34)

Now suppose by contradiction that lim, a, does iot exist in R. So, since (an)y is bounded, there are
two sequences in N, (p))x, (¢,)n such that limy ay = Iy, limy Qo = l», where

Iminf a, =0 <y = limsup a,.
n n

Set P:={p} :j € N}, Q := {q] : | € N}. Let now p; := p}, and choose q; > p1, 1 € Q: such an
element does exist, since @ is infinite. Pick now py € P such that p > ¢;: such a choice is possible,
because P is infinite. Keeping on by induction, it is possible to construct two sequences (pedn, (qn)n,

with the properties that: lim; ap; = l1, limg a,, = Iy, and
<@ <p2<...<@p-1<Pr<gn<Ppy1<...

For example, if we have just defined py < 1 < ... < Ph-1 < gnr—1, let us choose p, € P such that
Ph > gn—1 and g, € Q with ¢, > pp: this is possible, since P and Q are infinite.

Let now By, Bg be as in (34). For every n € N there exists one natural number J that n =t;, or
there is one positive integer s such that n = 7,. In the first case putdy, = ap;, and in the second case
set by, 1= ag,.

The next step is to prove that for all | € R there exists §() > 0, such that
{neN:|b, -1l >6} €7 (35)

L= L—1 )
| 21! andsete::l—?’dzg. By the

in the complement of a finite number of indexes 7. So

First of all, let us consider the case [ # l;. Take 6 :=
L — 1]

definition of limit, we get: |a,, — 1] <

there exists a finite subset N; C N such that, if n € B; \ N, then |b, — ;] < E;&El—i This implies
[— Il
that for all n € By \ Ny we get: |b, — 1] > ! 3 L Otherwise we should have:
=1 -1 B
=L € L= ba| # b — 1) < f 5 1l | 4 1 =zli-ul.
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This is possible if and only if I = Iy, but this is absurd, because it contradicts our assumption.
Thus the set {n € N: |b, — ] > 4} contains B; \ V|, and so it does not belong to Z, since B, € T,
N, is finite and 7 is admissible. Thus (35} is proved, at least when I # [5.

I =1

. Note that § = 0, since I; < 5. Analogously

We now turn to the case | = [;. Take § :=

Ir—1

o= ~ 3 5 i
in the complement of finitely many indexes s. Thus there is a

lh—1
4

. Otherwise, we get:

as above, we get |ar, — l2] £ —

whenever n € By \ Na. This inmiplies that for all

finite subset N, C N such that |b, — {2] <
Iy

i —
n € By \ Ny we have: |b, — 1| > :

lo —1 lo—1; 3
0<ly =l Sl =bal+lba—lol S 2o+ 22 =Sl ) <ly— Iy,
2 4 4

a contradiction. Thus the set {n € N : |b, —I] > 6} contains B; \ V;, and so it does not belong to
1, since By ¢ T, Ny is finite and Z contains all the finite subsets of N. This proves (35) in the case
= i

From (35) it follows that the sequence (b,), does not have Z-limit. By construction, it follows
easily that the sequence (ap,, @gys Gpy;. -1 8gu_y; Gpyy Qgys Uppiys - -1) does not have Z-limit. Thus

the assertion follows. O

Remark 3.8 We ask whether, if 7T # g, is any fixed adinissible ideal, m;, i € N, are g-additive
positive measures and 7 — lim; m;(E) exists for every £ € P(N), then for every disjoint sequence
(Cj); in P(N) one has: 7 — lim; [sup,ey m:(C;)] = 0. The answer is in general negative.

Indeed, let for example H := {h; < ... < hy < hgy1 < ...} be an infinite set belonging to T
and such that N\ A is infinite. Since 7 # Zg,, then H does exist. For every ¢t € H and £ C N,
set mi(E) = 0. For any s € Nand £ C N, set my (E) = 1if s € £ and 0 otherwise. Observe
that mo(E) := T — lim; m;(E) = 0 for each £ C N. Moreover, it is teadily seen that the my’s are
o-additive positive bounded measures. Indeed, given i € N and any disjoint sequence (C;); of subsets
of N, the entity m;(C}) can be different from zero (and in this case is equal to 1) at most for one
index j, because for all s € N we get that m;({s}) # 0 if and only if i = h,.

For every j € Nset C; := {j}: we get 1 > sup;cy my(C;) => mp, (Cj) = 1. This proves the claim. O
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LYETHGE YE EVAY OAOXANPWTIXG TEAETTH).

Enapevdvdog A. Alapavtémoviog

Hepiindhn

Oewpole tov ohoxhnpwtixd teAec 1Y

1
Z()) = 157 [, KEGAFQ e
émov [Sz] = (o + A2z) — (21 + Ai2), jz1 £ M| <1, i=1,2, xa

1
Ko = oy

émou p, g, pepduoppéc suvapticelc ato povabiaio dioxo. Acefyvoupe

nwg 0 tekeathg I pnopel va ypaget ot dpoug oralpiopivey TeERes TRV
" obvieong. Xpnaolponowdvrog TV EXQEOOT) AUty EVvorocbUe TehadTepd

anotehéopata mov agopolv 17 Spdoy elidy repintdozwy Tou TEheoT|

autod ot ybpoug avelutixdy suvapthoesy tonou Hardy, Bergman xat

Dirichlet .



2IYETIXG PE EVAY OAOXANPWTING TEAETTY,

EnouewvdvBag A. Awpavtérnovlog

7 Touvtou 2012

Oewpolue tov ohoxAnewtd TeEAecTY

1 / i8]
[Sz] o+ 85 p(Z)C + q(Z)
6mou p xa g ebvan UEpdUOpYES guvapTAGELG oTov povadiado uryadod dloxo, ;,
A € R, tétow dote |z + M| < 1, xan [S,] = (22 + Aez) — (71 + \i2), 2 € D.
Tekeotéc autod Tou TOmou eivar o ohoxhnpwtindg tedec g Tou Cesaro

I(f)(z) =

d¢, (1)

1 f* f(©)
—_ — e d
e =7 [ L
xot 0 oAoxhnpwtxds tehectrg Tou Hilbert

apics)
Hif)=z)= | —==d(.
0 1 = CZ
Lnv mapolod gpyacia yeretolue tov Tehesth Z otoug otaduopévous Y Opoug
Dirichlet D, 0 < a < 2, ot oxotot amoteholvTon and TIC avehUTIXES cUVHPTT-
oeig [ Yo Tig omoleg toyvet

11, = 17OF + [ 17 @PQ - 1a)" dm(z).

H adhvoitdo twv ywpodv autdy tepthapBdver to yopo Hardy H?, yio o = 1, xom
Tov xhaoowxd ywpo Dirichlet D, yia a = 0.

Oa anobdeifoupe pio weavy cuvihien and ™y omole Yo cuvdyetar mwe o
teheothic Z elvar ppoypévog atoug ywpoug Dy, 0 < a < 2.



H anédeiln tou mapomdve anoteréopatog Yiveta pe xprfion evog HATAAAT-
Aou petaoyruetiopol pe tov onolo o telestic I ypdpeton oe dpoug orad-
wopévey teheotdy obvieonc. H eldubrepn nepintwon yio amhés ypapxée
CUVOPTAGELC P Xott ¢, TOPOUCLAT TIXE TOAGTEPD: Gmd TOV OUYYPAPEN OTHY EP-
yaota [Dia2]. Emnhéov, otoug atadmopévoug ywpoug Dirichlet or teieateg
Cesaro o Hilbert yedetidnxav ot epyaoieg [Gal, [Li], xdtt mou onyoivet twg
1 Topolod umopet vo Vewondel wg gvvonolnor wwy EQYUCLOV QUTOV. Téhog,
eldIég MECINTWOELG TOU teheoth I €youv pehetnlel oTo mopehloy ot dhhoug
yhpoug avahutixdy cuvepthoewy ([Sis2], [Sis4], [DS], [Dial}).

1  Ewaywyn.

Yt ouvéyea, ue To obpPolo X da oupBohilouye éva yopo Banach avedutidy
cuvapTRoEWY ooV oRofo, Y xdde f € A, xon xdde 2 € D, undpyer pio oTordepd
c=¢(X) < 1, tétoa WoTE

1
F2) & =—i=ili 2 2)
| ( )I (1_}2,'),:” ”X (
Tupadelypata Tétolwy yopwv sivas o ywpog Hardy H?, p > 1 (c = 1/p, [Du]),
o ytpog Bergman AP, p > 2 (¢ = 2/p, [Vu]) xa o oraduopévos yweog
Dirichlet D,, 0 < a < 2, (¢ = /2, [Ga]).

Afppo 1.1, Boww z;, A € R, wéroe dote lZist M) £1,i=1,2 ka1 p, q
pepduoppes ouvaptrioes oto povadalo diowo. Av ya kdle z € D,

p(2) (@2 + Aaz) + a(2) 1Y
L,(z) (@1 + Mz) + q(z)] o

(3)

téte o teAeotris T efvar kaAd opropévos oo ydpo X.

Anddeifn. Tlodhto UTGDETOULE TC O CUVIPTAGELS P %ot g elval avoAuTiiég oTo
T 24P ¢pTT



D. Botw r,(t) =[St + (z1+M2), 0<t<], z€D. T f € X xu 2 €D,

p(2)¢ + q(2)
)
=il S “"tl

1 ) z !
o)
5/9 P + 9@ =
ey = [ sk

= tel0] [p(2)ra(2) + a(2)t Jo (1= [r=(0)])°
Evag anhdg unohoyiopds Selyver nwe nurddeon (3), pe Gdwan oo tetpdywvo,
Tolamhactopd e -1, npdodeon tou +1 xar ulo-avtioTpo@y, tooduvapet ue T
ouvdfun meg n owdpton [p(2)r.(t) + q(z)| ! ebvan gparyiévn wg pryeduc
cuvdptnon e ustaPintic £, yia xdle z € D, SnAadn
1
max
tel0,1] {p(2)r2(t) + a(2)]

< 0.

Emnhéoy, yig xade z € D, xau 0 <t < 1,
[ro(®)] < min{[Sx]t + (z1 — A1), [Swa]t + (21 + M)},
BnAabdr,
1= Jro(t)] = max{l = (z1 = A1) = [Sualt, 1 = (21 4+ M) — [Sult},

and 10 onolo CUVEYOUUE

el 1 1 1 1
| o < T e [

1—(z1£A1)

Emmhéov, xoddg Si; < 1 (21 £ A1), xau ¢ < 1, 1o teleutado ohoxArpwpa
ghvou menepoopévo, dnhadr o tedeotric T ebvon xodd oplopévog Yo xdde z € D
xow xdde f € X. Téhog, npooeyoupe mwg 1) UtdBeoT NG AVEALTIXOTNTHG TWY
p ovd g uropel va yohapdaet, xadie oy epinTwaon mou yio 1) xou ot B ond
TIC CUVOPTHOELG AUTES Elvan JEPOIOPPEG TOTE apxel Evag ToMATAUCLAoPOS TWY
3o pepov tou xidoparog f({)/(p(2)¢ + ¢(2)), pe xordinho moAvwvudo Yt
vt cuveyloouy Ta TapoTdve extyelpfuaTa va oy louy. O

4



2 EBixéc NEPINTOOELE TOL tehectn L

2.1 O teiectic I wg yevixsuon TAAAUOTEQWY EL0L-
KOV TEPLNTWTEWV.

Extéc and toug o)\ox)\r]pmuml’)g teheotéc tou Cesdro xat tou Hilbert, o te-
lscmg Z etvalt TEWTATUTO Yo OPXETOUG axOudL o)\ox)\qpmtmoug TEAEC TEC TOU
¢youv pehetndel oto moperdoy, onwg o Ts?\eamg A, mou eivar o H? ouluyrg
TOU TEAEGTH TOU Ce\smo ho ‘L‘E)\EGTT]Q Ho, 0 onolog napdyetor and TOV ATO-
xoppévo mivonco. Tou Hﬂbert. Trov nlvaxe 1, nopouctédlovtar ot ETMAGYESC TWV
Ti Ay = 1, 2, p xou ¢ mou avtiotoryolbv ot x&de pla tétoa mepinTwar, pall
UE XATOWL AVTITPOOWREVUTIXEG EPYUTLEC OTIG ornoleg oL TEAeoTEC auTol EYouY
ueketnel.

[Tivaxag 1: Ediés nepuntidoeig Tou tedeaty Z.

Teheo g 1 T2 M A p(2) q(2) Apdpa
C(f)(z) =1 f5 £ d¢ 0 0 0 . 1 -1 1 [Ga],[Sis4]

z) = ;__1—1 JEr@©de 10 0 1 0 1 [Sis2], [Sis3
TR =2 fFE%d 1+ 0 0 1 -1 -1 [Sis1]
H(f)(z) = fl L9 d¢ 0 1 0 0 —z 1 [DS],[Dial]
Ho(Az) =325, &d¢ -1 1 0 0 -2 1 [Dia2]

2.2 O T wg TEAECTAS TOU TARAYETOU ANd T1 Spdomn
rivoea.

Ot mepioodTEpOL and TOUG TEAECTEG TOU ATOTEAECAY TO XVITRO Yiol TNV EQYO-
ole auTH etven TeEAeoTéG TOU TapdyoVTaL and Tn BpdoT CUYXEXPYEVLY TVEXWY
GTOUG GUVTENED TEC AVIAUTIXGY CUVAPTHCEWY. AVOUEVOUEVR UTOPOUNE VoL EVTO-
niooupe pio yeyohltepn owoyéver Teheatdv To eifoug autold. Tuyxexpipeva,
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£GTW

s

Co0 Co1 Coz2
1o Ci,1 C12

M, = Cap Co1 C22 --- |

oo +k+1 +k+1
Y3 LT R e T
Cnp = (ml)n Py g i
TE, i “ .
@ (e —z)(n+k+1)

n, k>0,

1<z <23 <1, po, g0 € R, (g0 £ poza)(qo £ poz1) > 0, xen

OToU,
0, 0<n<k,
dpr = (—)nk n=k \n+1_ynti
s p Pa I | 2
q0 (qu) {(A2—A1)(n+1)? n 2k,

Pos @ € R, =1 < Ap < Ag < 1 xon {go £ pod1) (90 EpoAs) > 0. [ pg = —qp, ot
nivaxeg tng omoyéveing M) eivon mivaxeg Hankel eva urnopolv va Dewpnlolv
w¢ yevixevor) tou mivoxa tou Hilbert, 7 nepintwor tou onolou npoxinter yia
my emhoyd pp = =1, @ = 1, 31 = 0, 22 = 1. O avayveotng propel
vo. emPefondoel g o amoxouuévog wivaxag tou Hilbert epgavileta ye ™y
emhoYf po = —1, o = 1, 71 = —1, 33 = 1. And Ty dhAn uepid, ol wivaxeg Tng
owoyévewg Mp eivan xdtw tprywvixol nivoxeg ot onolol uropel v Yewpridody
wg yevixevon tou mivaxa Ceséro o omolog mpoximtet Y pg = —1, g = 1,
AM=0, A =1

Eotw, topa X yopog yio tov onolo toylet 1y undlicon (2). o xdbe ava-
ATy ouvdpTnon f(2) = Y peg GnZ™ € &, €070

0 o o
MIZ E anz“ = E E akcn!kz”,
n=0

n=0 k=0
ot
oo o n
M : E Anz"™ —+ E E Gl 32",
n=0 n=0 k=0



Ermumiéoy, urodétouue wg i xéde f(2) = D5 an2™, ™ Tapandve GRELpO.

adpotopata ouyxhivouv xou optlouv avahuTxEg cuvopthoei yio x&de f € &
Hedyport, autd umopel va enahndeutel yia Toug yopoug Hardy , Bergman xcu
ToUg CTAdUIOUEVOLS XWOpOoUg Dirichlet . Tégo umoloyiloupe
.’1:5]'+‘I“+1 - 3:711-+k+1

z
To— 2)(n+k+1)

P 1 i i
sl Eh / c*’“dc)z
z1

3 gy T2 I

Y
o — 1 Joy pDZC e} qo
qu+1 = Xiz+1

oy (1 e\ :
M=% Sl (2) iy

‘2

Mi(f)(2) = ak<—1>“q§9,1 (

E
i

g

I
g 1[V]e
2 [~]e

3
Il
=
ES
Il

pdely

n=0 k=0
co n i n—k Moz
- b 2
= E akg,_L (@.) C'n, dC e
n=0 \k=0 e do A2 = M S

1 Azz
_ /[ BEL. o
(A2 — M)z Jaz PoC+ Q0
Anb tic unodéoeag xan 1o Afjpua 1.1 ouvdyoupe Twg o terecTéC My, M eltvan
%chd. oplopEvol OTO YWPo A Téhog, xadde and TG mopandve cUVBTKES, 7)
uopw Twv tTEAEoThY My, Ms o oeipd ouyhiver, n akhery) Tou ohoxhnpda-

T0¢ HE TN OELpd eival EQUXCTY X0t XATOATYOUUE OTO emduuntd anotéleoua Twg
o1 TEAEOTEC awTol avaryvewpllovton wg Eliég TEPITTLHOELS TOU %

3 O terecthc I ot 6poug OTAVULCUEV®LY
TtehecTHV cLVUECTC.

Treviupiloupe g o & elvor Evag YOPOG UVUAUTIXWY CUVOPTAGEWY Ylol TOV
orolov 1 urédeon (2) wyler. T xéde (¢,2) € (0,1) x D, opiCoupe

1
(3 + Xz — t[S:])p(2) + g(2)’

w(t, z) =



xol

% (1 + Miz)(za + Ae2)p(2) + (21 + Az + E[S:])a(z)
(2 + Aoz — t[S:])p(2) + q(2)

Ilpbtaom 3.1. Bowo A, z: € [-1,1],4=1,2, |z £ N[ £1,i=1,2,p, ¢
pepduoppes oto D, tétowa wote

(¢, 2)

1/2

P e+ 2a2) +a(2)] Y

p(2)(z1 + Mz) +q(2)

ka1 ya kdde (t,z) € (0,1) x D,
(@14+X12) (B4 Ao 2)p(2) + (21 +M 2+2]S:])q(2)] < [(mat+Aoz—t[S:])p(2)+q(2}].

Tére, ya xdle f € X,

ﬂma=£ﬂm@ﬁ,

dmou

Ty(f)(2) = w(t, 2) F(v(t, 7).

Andbeln. Anb v mpdtn unddeon xa to Afuua 1.1 cuvdyouue Twg o TE-
Aeatfic T ebvan xohd oplopévog oto yweo X, eved and Tn devtepn unddeon, n
cuvdpTnon v elvou pla xahd oplopévy anerxdvion Tou povadiatou dioxov. Edxola
erohndetoupe mwg (0, 2) = 14+ A2, xon (1, 2) = Ta+Azz. Lo ohoxMipwpo
(1) epapuélouye v adhay petaPhntic ¢ — (i, z), xeu urohoyiloupe,

(6,2)  Ov(t2)
) = wy/p@wtz+«) o

Eivou

[p(2)(z1 + \12) + ¢(2)]Ip(2) (22 + Ao2) + g(2)]
p(z)(z2 + Aoz — 1[S:]) + a(2) ’

p(2)(t,2) +q(2) =

AL

Oy(t,2) _ [S:]lp(2)(m1 + Mi2) + a(2)]Ip(2) (s + Aa2) + q(2)]
ot [p(2)(z2 + Aoz — t[5]) + 9(2)]2 :




Optopéveg amhéc mpdiels pag dtvouv

[ Ja)
I{)2) = /0 p(z){za + Aoz — 1[S:]) +a(=)

= [ wtt st

rou ebvor To emBupntd UMOTEAECUCL. O

dt

4 Extipnorn tne vopuog Tou TeAEc T L GTOUG
otoaduiouévoug yweoug Dirichlet.

Ty napdypogo auth Beloxouye v emdugnt] extipnon. Emxevipwvopacte
oty Tesintwon X = Dy, 0 < o < 2. TrevBuuiloupe tny avicétnta Schwarz’s-
il ¢ HE i
Pick,
1 -}z & 1
T A = 1
4= ]’Y(‘t!")i iaz’Y(t,Z)[
1) onola Yo yonaonowmdel topouxdTe.

(t,2) € (0,1) x D,

Afppa 4.1, Eow [ € Dy, 0 < a <2, kar ya kile (t,z) € (0,1) x D,
(21X 2) (22 +222)p(2) + (@1 + Mz +S:])a(2)] < [(wat+doz—t[Se])p(2)+a(2)]-
Téte yia 0 < @ < 2,

O N O
Bt S G e

érou C' efvar katdAAnAn orafepd aveldpTnTn awd to t.

T, <C| [ 1s18..

Andbasn. Doty onédedn oupBolioupe wi(z) = w(t, z) xou 1:(z) = (L, 2).
Eotw f € Dy, 0 < a < 2. Ebva

ITUA) I, = L) + / (w2 Fn(2) (L = |2])* dm(2)
< ITHO)E +2 ]D wr(2) P (vt 2)) (1 = [2])° dm(2)

+2 [ wle, AP P~ D) am(e)
= IT(NO) + 20 + 21,

g



Topa,
h—/mwwmmmﬁhwwmm)

(= PR o
Cf TP g,

!’wt( )

m(2)|| F13,
eV Yl 10 ohoxfpwyua I Beloxouue,
b= [ WPl U ~ o dm()

= w(2)1?|f P (2P0 — (2 -—({—iﬂa—- z
= [ BRI PR — @) = s ()

bzlég ht( )l /}f (ve(2)? |'Yt( WA = ve(z)])* dm(z)
< sup L2z

= ABIE

Hivaxag 2: Avayxaiot unoloyiopol oyetixd Ue ToUg TEAECTEG TOU AMOTENETAY
T0 %ivTpo Yiot Ty egydoia auTh.

Teieotg [iggg? iifﬁmgﬂ i v(t, 2)
() =1 5 EQac vi—z e
A(f)(Z)=::~1f1 f(¢)d¢ 1 L .

@) =21 A« = e

(2) = J f £ ac VI=% -
UqulJaa V= e

10



Teld,

2 C 2
TP = O P (O < %!IIHDG
C’lw( )I” ()% o
— I Ia ”f“D — ‘::ED ] ( )1& “f{ Da
and o onolo nalpvouye xot 1o emviuuntéd arotElecua. O

A7é o tereutaio Ahuue, tny Hedtoon 3.1 xon Ty avicdtnta tou Minkowski
S ) |
e0xoAa amodetvioLye To

Oedpnua 4.1. Bow N, z; € [-1,1], i = 1,2, |lz: £ XM £ 1,4 =1,2, p,
q € H(D), téroa coore

lip(z)(ab + Agz} - Q(Z) 172

@t ) FaE)|

xar ya kdOe (t,z) € (0,1) x

(
|(z1 + M2) (@ + Xa2)p(2) + (21 + Mz + t[S:])a(2)]
|(z2 + Aoz — ¢[S.]))p(2) + a(2)]

Téve, ya kdle f € Dy, 0 < <2,
(e, < [ 1 [ / [ O P I L il R
220 [ ) Bl UL B G 2 Da:

Ba epappdooupe To apamdve Yedprpo yie va Belfoupe Twg oL TEAECTES
tou Tlivanca 2 elvar gparypévor oto otaduiopévo ywpo Dirichlet.

<% (4)

Mépwopa 4.1. O tedeotés C, A, T, H rxar Hy efvar ppaypévor oto oradin-
guévo ydpo Dirichlet, Dy, 0 < o < 2.

Andbertn. Edxola sxa)\r]ﬂsﬂoups TG Ol TUEATEVE TEAEC TEC Elvol XaAd OplopE-
vot otoug yopoug autols (Tlivaxag 2). Xernoworoubvtag *AATGIHEG TEYVIXEC
Belyvoupe Tes to empépoug avtiotora ohoxhnedpera elvar parypeva yia xdde
évay amd toug teheatéc. To amotéheoya TpoxUntel ond to Oewpnua 4.1, U

11
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HP BOUNDS FOR SPECTRAL MULTIPLIERS

ON RIEMMANIAN MANIFOLDS

ATHANASIOS G. GEORGIADIS

ANALYSIS CONFERENCE. IOANNINA GREECE

Let m(A) be a bounded :-asurable function in R™ and let 7}, be the
operator defined by

Tl (3) = m(A)T(A).

The Mikhlin-Hérmander multiplier theorem (M-H 1960) asserts that if
the multiplier m(A) satisfies the condition
sup A|2°m(N)] < oo,
AERR
for any multi-index . with |af < [%} 4+ 1, then T}, is bounded on L?, 1 <
p < oo and from L! to LL,.

Calderén and Torchinsky extending this theorem (C-1' 1977) , proved
that if the multiplier m(A) satisfies the condition

sup |A]¥|9%m(A)]| < oo,

AER™
for any multi-index o, with |a] < n [(% - %)} + 1, then 7}, is L »unded on
HP 0<p<l.

There are many generalizations of those theorems. For example on Man-
ifolds (M-H), Discrete groups, Lie groups, Nilpotent groups, Symmetric
spaces, Graphs, Stratified groups e.a....

My generalization (2010) of (C-T) is on the context of Riemannian mani-
folds

Let M be a n—dimensional, complete, noncompact Riemannian manifold
with C*°—bounded geometry. We denote by d(.,.) the Riemannian distance,
by da the Riemannian measure, by B(z,r) the ball centered at z € M with
radius r > 0 and by V(z,r) its volume.

May 28, 2010.



2 ATHANASIOS G. GEORGIADIS ANALYSIS CONFERENCE. IOANNINA GREECE

s We assume that M sctisfies the doubling volume property, i.e. there is
a constant ¢ > 0, such that

(0.1) V(z.2r) <eV(z,r), Yo e M, 7> 0.

From (0.1) it follows that there exist constants e; 5> §lich that

Ve, r) r\ D
2 . < - YeeM, r>t :
10:3) Vi, t) "’((1‘.) - sF2E> 0

a Let us denote by A the Laplace-Beltrami operator on M and by p; (2, y),
t >0, 2.y & M, the heat kernel of M, i.e. the fundamental solution of the
heat equation dyu = Au. We assume that p; (z.y) satisfies the following

estimates: there are consiants ¢, ¢ > 0 such that
N L ey

(0.3) pi{ay, < r-'M:
' V(x, vt)

for all t > 0 and 7,y € M, and there are constants ¢1.c2 > 0 and v € (0, 1),
such that for all i > 0, and »,y,2 € M, with d(y, z) < Vi,

C],f.’."czd(:l:,y)z/t (d(y: z) )ﬂf
V(x, V1) Vi

(0.4) [pe(z, 4) — pe(.2)| £

e The Laplace-Beltrami ope.afor A on M is a positive and selfadjoint oper-
ator on L2(M). Thus, by the spectral theorem

A :/ ME;,
0

where df2y is the spectral measure on M.
Ifm: R — R is a bounded Borel function, by the spectral tiieorem we
can define the operator

m(A) = '/OOC m{A)dE),

which is a bounded operator on L*(M), with ||m(A)]|z—2 < |[m]lee. The
function m is called a multiplier and the operator m(A), is called a spectral

multiplier.
e Let us set,
D
Po = D‘l"‘f’,
and
L1
A=A(p)=D|=-—-z]+¢e, >0,
77 A

for all p € (po. 1|. Note that in case when Ric (M) > 0,py = 5.
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» Let us denote by C#(1R) the Lipschitz space of order A > 0, and by H? (M)
the Hardy space. Finally, let us fix a funetion 0 < ¢ € C*°(R), with
d(l) =1, VL€ [1.2], #(t)=0, Lt (,4)°

In the present work we prove the following

» theorem: Let M be a Riemannian manifold as above and let m(A), A € R,
be a multiplier satisfying

(0.5) sulgH(ﬁ(.)m(ﬁ.)ﬂcmpg < oo, p € (po,i]
t>
Then the operator m(A) is bounded on HP.

We note that by interpolation and duality, from Theorem it follows that
m(A) is bounded L? (M), for 1 < p < oo, and on BMO (M).

v exg. A 8 eR.
s If p € (po, 1], we say that a function a is a p-atom, if there is a ball B(y.r)
such that
(0.6) supp(a) C Bly,r), ||alle < V(y.r)~ VP
and [,, a(z)dx = 0. From (0.6) we get that

(0.7) llelly € Vig,r)MD-/0 g >1,

e We need first to define the Lipschitz space L£,, o > 0. We say that
1 & La, if there is a constant ¢ > 0 such that for every ball B and 2,y € B,
we have

(0.8) L) = f(w)l < < B|*.

The norm || f|iz, is defined as the smallest of those constants ¢ and males
Lq,a Banach space.
For p € (pg,1) we set @ = (1/p) — 1. Then we define H? as the space
; oo
of those functionals f € £, which can be written as f = Y A,a,, where

n=0

(An) € &7 and (a,) is a sequence of p-atoms. We set

oo 1/p 5
| f | e = inf (Z ’\n|f)) i = Z)\nan

n=0 n=0

We note that the dual H? is £, and that for every f € £, and for every
ball B and y € B, we have that

(0.9) NF = Fllezm < Iflle.

» Strategy of the proof
(1) Let p be in {pg.1). a I a p-atom supported on B{y,r). y € M. r >0
and 1 € C§°. By the anality argument it suffices to show that

|(m(A)a, $)| < ellallar|[Pllc. = clldllc,,

B|\t/m-Q1/2),




4 ATHANASIOS G. GEORG...DIS ANALYSIS CONFERENCE. [OANNINA GREECE

(2) Cancelation property: For every p-atom a, we have

(m{A)a){(z)dz = 0.
M

Then we write
(0.10) (m(A)a, ¥) = (m(A)a, s —b(y)).
and 1) — () = 41 + 4o, supported on ball B{y,4r) and on its com-
plement respectively.
We have then

(0.11) (&) 1) = (A, ) + (m(A)a, ).
(3} By the Cauchy-Schwarz inequality we get that [(m(A)a, ¥} <
[Im(A)a-s2li 2l = L) liL2(ae,a))-
Using {0.7) and (0.9), it follows frow the doubling property that
Hom{A)a, )] < eflpllc..

(4) We cut the multiplier on compactly supported terms my and

[m(A)adadl € D [mi(B)a, )i+ D [im;(A)a,va),

F<N+4 J>N+4
where N € Z be such that
(012} 2N/2 <r< 2(1\’-!-")/2.

(5) The second sum is estimated simillarly with the case of graphs.
(6) For the first sum because, B(y, 4r)° C Ugznrady(y), where

Ag(y) = B(y,2497D/%) — B(y,29/%)
we take by the Cauchy- Swartz

[(m (D), )] <

2 lims(A)alleaga, o lltielleega,mys
g=>N+4

and by Minkowski inequality , [l (A)allLzia, @y <

flally  sup “I{j(-‘z)“L“(A,,(y))-

d(z,y)<r

Where K is the kernel of m;(A).It suffices to estimate the norm

“Kj('sz)“nﬂvz(/}q(y})
but this is a consequence of heat kernel’s estimates. In fact we have if
i<gq
M ~A(q—5)/2
(0.13) T IONRRRE ... \/”V(j‘z,ﬁ)
Putting all together with the relations (0.7),(0.9), using the doubling
volune property and <umming over q and j we have that

{m(A)a, va)] < clfeh]lc. (g-e.d.)

Partially supported from Onaseio foundation Greece.




MIA NEA KAAYH APIOGMHXEIMA KAOOPIZOMENON
XOPON BANACH

KAMTIOYKOY: KYPIAKOZ-TIANEIIETHMIO AQHNAL

Hobraocn 1. ‘Borw X undywpos evé¢ cuurayols torodoyixol ydpou
K. Tore ta axddovla civat toodvvaua:
(i) Yrdpye: axolovbia K, n € N ovunaydy vroouvélwy tou K té-
tota Gote yia xdfe ouunayéc vrootvolo L tov X xarx € K\ X
va vrdpyetn € N ue L K, xat z ¢ K.
(ii) Ymdpyouv ouunayr vrootvoda B,, s € S tov K xat vrootvodo
3 rou X térowa dote yia xdlfe ovurayeés vrootvoro L tou X va
vrdpyet 0 € X' ue

LgﬁBgmgX xer X = | ﬁBa,n

n=1 oeX! n=1
(i) Ymdpyet vmogtvodo X' tou X xat dve nuiovveyic ouvdptnon F :
2 — K(X) térowa dote yia xdle ovunayés vrootvodo L tov X
va undpyet o € X' ue L C Fo) . Eidixdrepa X = F(X7).

Optowds 2. 'BEvag t.y. X xaheltar toyvpd aptfuijoua xafopt{duevoc
( SCD) av undpye évac t.x. K tétowog dote X C K xou o ouvOijneg
NG TEONYOVUEVNS TEOTAOTS VoL LXAVOTOLOUVTUL.

Tlapathonon 3. (i) H nopandve npdtaon toyler av avtl yia Celyn
(L,z), ue L ovunayég unocvvoro tou X xoau z € K \ X, otn ouvlruy
(i), Bewprioouue Cedyn (u,z) e uw € X xouw z € K\ X (xow avdroyeg
petatporée otig ouvBinee (ii; xau(iii)). Ztnv replntworn auth £xouue
v xhaow) évvota tou Aplluiowe Kabopilduevou yopov.

(i) Enuetdvoupe entone 6t av ot cuvBixee (il) xa (iil) avonotobvtal
ané 10 ¥ avtl tou L' td1e Exoupe TV Evvola Tou toyupd K-ovalutinol
TOTOAOYIXOU YGpou mov eladyetol and toug Mepxoupdxrn — Dtaudty.
Tlapadeiypata 4. (i) Kdbe toyupd K-avalutxds totohoyixdg yieog
elvat toyupd aplBunowa xabopilduevog.

(it) Kébe daywplowog petpude yhpog sivat toyupd aptBufoiua xabopt-
Couevoc.

Date: 28/05/2010.
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(iit) "Bvac K-avadutixde yodpog dev elvat xat’ aviyxrn woyupd aptbur-
owa xaboplduevoc. ‘Eotww I éva oldvoro pe || = ¢ (tnv oyl Tou
ouveyolc) xot X = [I']Y (1o olvoho TwV MENEQUOUEVOY LTOCUVOAWY
tou I'),Bewpoluevo wg undywpoc tou cupmayolc ydeou {0,1}. O
yhpoc X eivar o-oupnayic (ewdixdtepo K—ovohutixnde), St wropel vo
yoagel oty woped X = oo, [[']5®, 6mou [I]5" elvar to olvoho twv
unoouvohwy tou I pe |A| < n, evd dev elvor woyupd aptbufoa xabo-
owldpevog.

Baouxég dLotnteg
(1) Khetotdg vndywpog evic woyvpd aplbufiota xabopildpevou ydpou
elvon 1oyLpd optbunoiua xobopllduevoc.
(ii) AptBurowto yivéuevo toyupd aolbuioiua xaboplduevey ydowy elva
woyved aptlurowua xaboplbuevoc.
(ili) 'Eotw X tonokoyixds ydpog. Téte ta axdroubo elvan 1oodlvoua:
(1) O ydpog X eivar oyupd aptBuriowa xaboplbuevoc.
(2) O yopog (K(X),7,) etvar toyupd aptbuioiua xafoplbuevoe.
(3) O yopoc (K(X),7,) etvar apifuforpa xafoplbuevos.
(iv) Buveyric edva evéc toyued aptbufoua xaboptléuevon ybeou dev
elvar x0T’ avdyxn woyvpd apliufowa xabopllbuevoc.

M ouveyfic anewdvion f: X — Y Aéyetor compact covering av yia
xébe ovurmayég unoolvolo L tou Y undpyel éva oupnayéc unoclvoro
K tou X tétolo Gote va oyler f(K) = L.

Av n amewdvion f: X — Y elvol compact covering xou o ydpoc X el-
vou Loyupd apbufoiua xaboplbuevog, téte o Y elval Loyupd aptBufioia
rafoplduevoc.

Opwopds 5. "Evag ydpog Banach Aéyetar aofevds ioyvpd apifuioiua
xafopi{duevoc (SWCD) av elvar toyupd apluriowa xaboplduevog otny
aofevi) tou ToroAoyia.

"Evag yopoc Banach X elvat SWCD av »at uévov av o ydpoc (Bx, w)
etvor SCD.

Mopadeiypata 6. (i) Kédbe SWKA ydpoc Banach eivar SWCD, erno-
névog xou wdle SWCG yopog Banach. Ewucdtepa xdle Sioywpl-
auog ywpog Banach ue v dtdtnra Schur.

(i1) Kabe daywpiowog ydpoc Banach pe Siaywployio duixd.

Xopaxtnplopbds ydewyv Banach SWCD

{Igotaon 7. Foww X ydpo, Banach. Tdre ta axdlovfa eivar tgodU-
vaua:

(1) O yépoc X elvar SWCD
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(2) Yndpye: évas Siaywplowos uetpixds ydpos M xot pia otxoye-
veiw {Wg : K € K(M)} aclevic ouuraydv vroouvéioy tov X
TETOLA GOTE:

e Av K|, Ky € K(M ) ue K, C K,, téte Wk, C Wk,
o o xdfe L acllevic ovurayés vnoolvolo tou X umdpyei
K € K(M) térowo dore L C Wkg.

Gedpnpo 8. Forw X Sraywplowos yopeoc Banach, o oroiog dev me-
ptéyer tov 1. Tére 0 X* elvar Siaywpiowoc ay xat udvov av o X eiva

SWCD.

IIépropa 9. Kdfe ydpos Banach X SWCD, o onoiog dev neptéye: toy
£ eivar Asplund, xard ouvémeia WCG.

AfBpolouuta yopwy Banach SWCD

Ilpdtaon 10. Forw (X,) pra axoiovlia yépwv Banach SWCD xa
p > 1. Téte o ydpoc X = (D o, &X,), eivar SWCD.

n=1
Ae yvwpilouue av éva ¢p- dlpoopa ywpwy Banach SWCD eivar SWCD.
‘Eyouue opwg v axdiovln eldixn neplatwon,.

ooétaon 11. Borw (X,) pua axolovbia Siaywplowey ydpwy Banach
SWOD xat xalle X, éyet Staywpioo Suvixé 7 éyer v tdidtnra Schur.
Téte 0 ydpoc X = (D> o0, ®Xy)o elvar SWCD.

Oedpnua 12. TNa xdfe £ < wy fewpovue éva ydpo Banach Ee ue
wa vopuaptouévy Schauder Bdon (ewmys)), n omola dev €yer aolevise
ovyxAivovoa vraxodovlia. Tére o ydpoc Banach E = (Z§<w1 BSL¢),,
drovp =0 74p>1elvar WCG, addd éyt SWCD.

IIépiopa 13. O ydpoc Banach cy(wy) Sev elvar SWCD.

Oedpnpa 14. 'Borw K ovurayijc tomodoyixds ydeos. Téte o ydpoc
C(K) eivar SWCD av udvov av to K eivar apifuroo.






Fixed point theorem for three mappings on
three complete metric spaces, using implicit relations
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Abstract. A fixed point theorem in three metric spaces is proved. This result
extends the results obtained in [3] from two metric spaces to three metric spaces. It
generalizes the results obtained in [6,7,8]. A several corollaries are obtained according as
the forms of implicit functions.

1. Introduction

In [6], [7] and [3] the following theorems are proved:
Theorem 1 (Nung) [6] Let (X,d),(Y,p) and (Z,0) be complete metric spaces

and suppose T is a continuous mapping of X into ¥, S is a continuous mapping of Y
into Z and R is a continuous mapping of Z into X satisfying the inequalities
d(RSTx, RSy) < cmax{d(x, RSy),d(x, RSTx), p(y,Tx),o(Sy,STx)}
p(TRSy,TRz) < cmax{p(y,TRz), p(y,TRSy),0(z,Sy),d(Rz, RSy)}
o (STRz, STx) < cmax{c(z,8Tx),0(z,STRz),d(x, Rz), p(Ix,TRz)}
forall xin X, y in ¥ and z in Z, where 0<c<1. Then RST has a unique fixed

point  in X, TRS has a unique fixed point v in ¥ and STR has a unique fixed point
w in Z . Further, Tu=v,Sv=w and Rw=u.

Theorem 2 (Jain et.al)[7] Let (X,d),(Y,p) and (Z,0) be complete metric
spaces and suppose T is a mapping of X into Y, S is a mapping of Y into Z and R is
a mapping of 7 into X satisfying the inequalities

d*(RSy,RSTx) < cmax {d(x,RSy)p(y,Tx), p(y,Tx)d(x, RSTx),
d(x, RSTx)o (Sy,STx),c(Sy, STx)d (x, RSy)}

P (TRz,TRSy) < cmax {p(y,TRz)o(z,5y),0(z,Sy)p(y,TRSy),
p(y,TRSy)d(Rz, RSy),d(Rz, RSy)p(y,TRz)}

o*(STx,STRz) < cmax {o(z,STx)d(x,Rz),d(x,Rz)o(z,5TRz),
o (z,STRZ)p(Tx,TRz), p(Tx,TR7)c (2, STx)}



forall xin X, y in ¥ and z in Z, where 0<c<1. If one of the mappings R,S,T is

continuous, then RST has a unique fixed point # in X , 7RS has a unique fixed point v
in ¥ and STR has a unique fixed point w in Z . Further, Tu =v,Sv=w and Rw=u.

Theorem 3 (NeSic )[3] Let (X,d) and (Y,p) be complete metric spaces. Let T
be a mapping of X into Y and S amapping of Y inio X . Denote

M, (x,y)={d"(x,5),p" (3. Tx), p" (3, T5y)}
and
M, (x,y) = {p" (3,Tx),d” (x,5y),d” (x,5Tx)}
forall xin X, y in¥ and p=1,2,3,....
Let R* be the set of nonnegaﬁve real numbers, and let F,:R* —> R” be a mapping
such that F,(0)=0 and F, is continuous at 0 for i=1,2.
If T and S satisfying the inequalities
p"(Tx,TSy) < ¢, max M (x, y)+ F(min M, (x, y)),
d”(Sy,STx) < ¢, max M, (x, y)+ F,(min M, (x, y)),
forall x in X and y in ¥, where 0<¢,,c, <1, then ST has a unique fixed point z in
X and TS has a unique fixed point w in ¥ . Further, 7z=w and Sw=z.

2. Main results

We will prove a theorem which generalizes the Theorems Nung [6], Jain,
Shrivastava and Fisher [7], NeSic' [3] and extends the Theorem Ne§ic' from two to
three metric spaces. For this, we will use the implicit functions.

Let @Y be the set of continuous functions with 4 variables

@ :[0,+0)" — [0,+00)
satisfying the properties:
@ is non descending in respect with each variable.
p(t,t,t,0)<t" ,me N.

Denote I, ={1,2,3,4}.
Some examples of such functions are as follows:

Example 4 ¢(t,,1,,1,,1,) = max{t,t,,4,,4,}, with m=1.
Example 5 ¢(1,,1,,1,,1,) = max{tg; :i, je I}, with m=2.

Example 6 ¢(1,,1,,1,,1,) = max{tt,, t,t,, 1,1, L, }, with m=2.



Example 7 ¢(t,,t,,t;,t,) = max{t 1] .t ,t] }, with m=p.

Let ¥, be the set of continuous functions with 4 variables
y :[0,+00)" —>[0,+e0)

satisfying the property
bt =0 w5, 0,.8,)=0.

Example 8
Wit ty,t,0,) = min{z,,t,,1;, 4, }

e tatt,) = minft 4. B )

w(t,t,,b,t,) = min{t] 1] 1] 1]}, etc.

Let F be the set of continuous functions
I :[0,+00) = [0, +c0)

with F(0)=0 (For example F(r)=t“,k>0).

Theorem 9 Let (X,d),(Y,p) and (Z,0) be complete metric spaces and suppose

T is a mapping of X into Y, S is a mapping of Y into Z and R is a mapping of Z
into X, such that at least one of them is a continuous mapping. Let

pe M yw.eV¥, FeF for i=1,23. If there exists ge [0,1) and the following
inequalities hold
(H d" (RSy,RSTx) < g¢,(d(x,RSy),d(x, RSTx), p(y,Tx),o(Sy, STx))+
+ F (w,(d(x,RSy), d(x, RSTx), p(,T%),0(Sy, STX)).
2) p™ (TRz, TRSy) < q9,(p(,TR2), p(y,TRSy), (2, 5y), d(Rz, RSy)) +
+ F, (pr,(p (3, TR2), p(y.TRSY), 0 (2, Sy), d(Rz, RSYy)).
3) o™ (8Tx,STRz) < qp,(o(z,8Tx),0(z,5TRz),d(x, Rz), p(Ix,TRz))+
+ Fy(w;(0(2,5Tx),0(z, STRz), d(x, Rz), p(Tx,TRz))
forall xe X,ye Y and ze Z, then RST has a unique fixed point ¢ X , TRS
has a unique fixed point fe ¥ and STR has a unique fixed point y € Z . Further,

Ta=4,S8=y and Ry=a .
Let x,€ X be an arbitrary point. We define the sequences (x,),(y,) and (z,) in

X.,Y and Z respectively as follows:
x, = (RST)' 3,5, =Tx, 1,2, = Sy,,n=1,2,...

Denote
du = d(xn’xn-!-!)’pn . p(yn" yn+1)’0n = O-(Zn’ zn+l)’ n= 1’2"“

By the inequality (2), for y=1y, and z=2,, we get:



pm(yn’ y:a+l) S quE(p(yn’ yn)’p(yn’ y:xé—\)’g(zrh]’Zn)’d(xn—!’xn))+

+F, 0, (00, 2,05 PO Yot 02,152, A%, 45 X,)-
or
Py < 49,0,0,,0,,.d, )+ EW,0,p,,0,.4, d, )=
= 99,(0.9,,0,.1-4,,) )
For the coordinates of the point (0,p,.0, ,,d, ;) we have:
p, <max{d, _,,o, },¥Yne N (5)
because, in case that p, >max{d, ,o,,} for some 7, if we replace the
coordinates with p, and apply the property (b) of @, we get:
P S GPy (0,2 P s £0) < AP -
This is impossible since 0< g < 1.
By the inequalities (4), (5) and properties of ¢, we get:
pr < qp,(max{d, 0, },max{d, o0, },max{d, .o, },max{d, .0, D=
£ gmax{d] 0.}
Thus
o % {‘/5 max{d,_,,o,,} (6)

By the inequality (4), for x=1x,_, and z =z, we get:
O-m (Zn ’ Zn-i-l) = quS(o-(zn ? Zn)"o_(zn ’ zn-{-[)’ d(xnfl’ xn)’p(-yn 3 yn+l )) +
R Ao (z,02 002 % 1 0E 1 X 2T Fpy I

or
O-r"" S q¢3(0’azr’dr1—l’pu)+F3(0) =

= s (0’ Oy» dnvl ’pn) (7)

In similar way, we get:
ol < gmax{d) ,p,},Vne N.

By this inequality and (6) we get:
o, <tfqmax{d, ,,0,,},Yne N (8)

By (1) for x=x, and y=y, we get:
d’f“ ('xu’xuﬂ) S qtpl (d(xn"xn)’d(xn’xnﬂ)’p(yn’ yn+] )70-('211’ ‘Zn+1 ))+

+F(w, (d(x,,%,0,d (%, %, P Vs Vo1 1s0 (2,5 2,1 )))
or
ar < qp,(0.d,,p,.0,)+F(0)=

= qqgl (0‘-‘ dr:’pn’an) (9)



For the same reasons we used to (5), for the coordinates of the point (0,d,,p,.0,)

we have:
d <max{p,,o0,},Vne N.

Applying to (9) the properties of ¢, and the inequalities (6), (8) we get:
d, £ %max{pn,an 1< da({ﬁ max{d, ,c,,})=
= ;{r/—q_(.r{/a‘) max {dn—l "O.n—l } = Q/E max{dn—l 1 O-n—l }

or
d < {Emax{d,l_l,cf,,ul} (10)

By the inequalities (6), (8) and (10), using the mathematical induction, we get:
d(x,,x,,) < " max{d(x,x,),0(z,2,)}
P(Vs Vo) < 77 max{d(x;, %,),0(%,2,)}
o(z,,2,,,) < " max{d(x,x,),0(z,2,)}
wherea’/a 2 e o
Thus the sequences (x,),(y,) and (z,) are Cauchy sequences. Since the metric
spaces (X,d),(Y,p) and (Z,0) are complete metric spaces we have:
limx, =€ X,lir)ﬂyn =pfe Y,li_r}gzn =yeZ.

n—ro

Assume that S is a continuous mapping. Then by

lim Sy, =limz,.
it follows
Sp=y. (A1

By (1), for y=/4 and x=x, we gel:
d" (RSB, %) < @, (d(x,. RS B),d(%,,%,01): (B V)0 (7. SEN+
+F, (,(d(x,,RS3),d (x,, %,,,): P(B Y1) (¥, S F)))-

By this inequality and (11) we get:
d'” (RS‘B,)C“H) = QQ'?; (d(xn 2 RSﬂ)’ d(xn ? xu+! }’p(ﬁ’ yn+1)’ 0) +
+F(0).

Letting n tend to infinity, we get
d™(RSPB.,@) < qp,(d(RSB,a),0,0,0) < qd" (RSP, cx)

or
d(RSB,a) =0 RSB =a. (12)

By (2), for z=Sf and y=y, we get:



P (TRSB,y,.,) < q0,(p(y,, TRSB), p(¥,> Y, -0 (8B, 2,),d(x,, RSSF)) +
+F, (W, (0(3,.TRS ), p(¥,s Yuur 0 (8B, 2,),d(x,, RS 3))).

Letting » tend to infinity and using (11), (12) we get:
p"(TRSS.B) < qp,(p(B.TRS3),0,0,0)+ F(0) .

or
o™ (TRSB,B) < gp™(B,TRSB) = TRSf = . (13)

By (11), (12) and (13) it follows:
TRSB=TRy=Tax=p
STRy = STa =88 =y
RSTa = RSf=fBy=c

Thus, we proved that the points «,f,y are fixed points of RST,7RS and STR

respectively.
In the same conclusion we would arrive if one of the mappings R or 7' would be

continuous.
Let we prove now the iniquity of the fixed points «, 8 and y.

Assume that there is @' a fixed point of RST different from « .
By (1) for x=¢' and y=Ta we get.
d"(a.a") = d"(RSTa,RSTa ) <
< g, (d(¢' ,RSTa),d(c ,RSTa"), p(Te,Te' ), (STar, STa')) +
+F (y,(d(e ,RSTa),d(e , RSTa), p(Tee, Tt ), o (ST, STa')) =
= gp,(d(@,@),0,pTa,Ta’),o(STa,STa')+ F(0) <
< gmax{d"(&',a),p" Ta,Ta"),c” ($Ta,STa')}
or
d"(a,a')=qgmax A (14)
where A={d"({a',a);p"(Ta,Ta');o™(STa,5Tca')} .
We distinguish the following three cases:
Case I: If max A=d"(a',a), then the inequality (14) implies
d™(a, )< gd" (@, a)=>ad =a.

Case II: If max A = p"(Ta,Ta’), then the inequality (14) implies
d"(a,a') < qp" (Ta,Ta’) (15)

Continuing our argumentation for the Case 2, by 2) for z=8Ta and y=Ta' we
have:



p"(Ta,Ta') = p"(TRSTa, TRSTa') <

< gqo,(p(Te! ,TRSTa),p(Te', TRSTa'),o(STa,STe’), d(RSTa', RSTax))
+F,(w, (p(Te! , TRSTQ), p(Te , TRSTe! ), 0 (STex, ST ), d(RSTed', RST ) =
= gp,(p(Ta' . Ta),0,0(5Ta,STa'), d, (a, )+ F(0)=

< gmax A (16)

Since in Case I, max A= p" (T, Ta'), by (16) it follows

o"(Ta,Ta)< qp" (Ta,Ta')
or

pTa,Ta')=0.

By (15), it follows d(a,a’)=0.
Case IIL: If max A =c"(8Ta,STa'), then by (14) it follows
d™(e,a’)< qo" (STe,STa’) (17)

By the inequality (3), for x=RSTa,z=3S Tea' , in similar way we obtain:
o™(STa,STa') < qmax A = go™ (8T, STa'")

It follows
oS8T, STa')=0
and by (17) it follows
dig.a’)y=0.

Thus, we have again ¢ =a' .
In the same way, it is proved the nicety of g and y.

We emphasize the fact that it is necessary the continuity of at least one of the
mappings T,S and R. The following example shows this.

Example 10 Let X =Y =Z = [0,1};d = p = o such that
d(x,y)=lx—yl,Vx,ye [0,1]. We consider the mappings T,S,R :[0,11— [0,1] such that

1 for x=0

T RyeSo=y y
!6 for xe (0,1]

We have



{lforx:()
STx=RSx=TRx =142

lti v xe(0,1]

and

[l for x=0
RSTx =TRSx = STRx =4 *

lfg_ for xe (0,1]

We observe that the inequalities (1), (2) and (3) are satisfied for

: 1
P, =0, =p,=pc ®F with p(,,1,,t;,2,) = max{t,t,,1,,%,}, where g=— and F=0.1It

can be seen that none of the mappings RST,TRS,STR has a fixed point. This is because
none of the mappings T, R, S is a continuous mapping.

3. Corollaries

Corollary 3.1 Let (X,d),(Y,p) and (Z,0) be complete metric spaces and
suppose T is a mapping of X into Y, S is a mapping of Y into Z and R is a mapping
of Z into X , such that at least one of them is a continuous mapping. Let
F :[0,+0) = [0,4+0) be continuous with F(0) =0. If there exists q< [0,1) and me N
such that the following inequalities hold

(D d™ (RSy, RSTx) < gmax(d(x, RSy),d(x,RSTx), p(y,1x),c(Sy, STx))+
+ F,(min(d (x, RSy), d(x, RSTx), p (3, Tx), 5 (Sy, STx)).
@ p" (TRz,TRSy) < gmax(p(y,TRz), p(y,TRSy),0(2,S5y),d(Rz, RSy)) +
+ F,(min(p(y,TRz), p(y,TRSy),c (2, 5y), d(Rz, RSy)).
(3)

o™ (8Tx,STRz) < gmax(o(z,5Tx),0(z,STRz),d (x,Rz),p(Tx,TRz)) +
+ F,(min(o (z,8Tx),0(z,5TRz),d(x, Rz), p(Tx,TRZ))

forallxe X,ye Y and ze Z, then RST has a unique fixed point e X , TRS hasa
unique fixed point fe Y and STR has a unique fixed point ye Z . Further,
Ta=4,Sf=y and Ry=a .

The proof follows by Theorem 2.6 in the case
E=F,=F,=F,p,=¢,=¢, =pe ®” such that ¢(t,,1,,1,,1,) = max{t",2;",1;",2;'} and
W, =W, =y, =y, where y(t.1,.1,,1,) =min{",2;,1,1,' }.



Corollary 3.1 extends Theorem 1.3 (NeSic’ [3]) from two in three metric spaces.

Corollary 3.2 Theorem 1.1 (Nung [6]) is taken by Corollary 3.1 for m=1 and
F=0,

Corollary 3.3 Theorem 1.2 (Jain et. al. [7]) is taken by Theorem 2.6 in case
FE=FE=F=0p=0,=0,=pc 0 such that ¢(t,,1,,t,,1,) = max{t,t;, 1,1, 6,4, 1,1, }.

Cerollary 3.4 Theorem Kikina (Theorem 2.1, [8]) is taken by Corollary 3.1 in
case @(t,,1,,1,,t,) =max{y",t; &'} and WAL tate by =004 0 i b

Corollary 3.5 Let (X,d),(Y,p) be complete metric spaces and suppose T is a
mapping of X into Y, S isamapping of Y into Z. p,€ ®,,F,e F for i=1,2. If there
exists ge [0,1) such that the following inequalities hold

() d(8y,8Tx) < g, (d(x,8y),d(x,5Tx}, p(y,Tx)) +
+ F (y,(d(x,Sy),d (x, STx), p(y,Tx)).

@) pT(TxTSy) < qp,(p(3,7%), p(3,15Y),d (x, Sy)) +
o+ Fl ('//2 (P(}’v Tx):p(yaTSy)s d(JC, SJ’))

forall xe X,ye Y, then ST has a unique fixed point ¢ X and 7 hasa
unique fixed point fe Y. Further, Ta = 5,58 =y .

By Theorem 2.6, if we take: Z = X,0 =d the mapping R as the identity mapping
in X, 0,(t,5.5.8,)=@,(,6,,5,),w,(t,1,,15,8,) =, (t.1,,5) , then the inequality (1) takes
the form (1), the inequality (2) takes the form (2') and the inequality (3) is always
satisfied since his left side is o™ (STx, STx) = 0. Thus, the satisfying of the conditions (1),
(2) and (3) is reduced in satisfying of the conditions (1") and (2').

The mappings 7 and S may be not continuous, while fromt he mappings T,S and

R for which we applied Theorem 2.6, the identity mapping R is continuous. This
completes the proof.
We have the following corollary.

Corollary 3.6 (Theorem Nesic' [3]). Theorem 1.3 is taken by Corollary 3.5 for
3

P =@, =@, =W, =W such that gai(t’,tg,t3) = max{tf’,t;',t } and
w(t,1,,5) = min{s", 17,4}

We emphasize the fact that in the Theorem 1.3, the mappings F and F, can be
replaced by F(¢) = max{F,(¢), F,(t)} and c,c, can be replaced by g = max{c,c,}.

Corollary 3.7 Theorem Popa (Theorem 2, [2]) is taken by Corollary 3.5 for



©, =@, =@ such that ¢(t,,t,,t,) = max{ft,,41,, 5,0} with m=2 and F =0,

We also emphasize here that the constants ¢, ¢, can be replaced by ¢ = max{¢,,c,}.

Remark. As corollaries of these results we can obtain other propositions
determined by the form of implicit functions, for example Proposition Popa (Corollary 2,
[2]), Theorem Fisher (Theorem 1, [1]) etc.
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Abstract
We evaluate explicity certait: quantities regarding the Brownian mo-
tion process on the n-dimensional sphere of radius a. We start with the
transition densities of the process. Then we calculate some probabilis-
tic quantities (e.g. moments) of the hitting times of specific symmeltric
domains.

1 Definitions and properties

1.1 The n-sphere

Definition 1.1 Letn € N* = {1,2,3,...}. The n-dimensional sphere S™ with
center (¢y,...,chr1) and radius a > 0 is defined to be the set of all poinis

# = (B4, B0, s Ty i) € R+ satisfying (2 — {31)2 4 s - (Fnpr — Cn-l-l)z = d?.
Thus,

8" ={ (z1,%2,--»Tny1) € R+ | (z1 — 01)2 4 e nsfe (i 5 = Cn.—!—l}? = g* }

There are two different coordinate systems we use, the stereographic preojection
coordinates and the spherical coordinates

Definition 1.2 We consider R* ¢ R™ to be the plane given by z"T! = 0.
For convenience, we will let (z1, %2, ..., Tn, Tnp1) be coordinates on R*™ and
(&1,&a,....&n) be coordinates on R™ C R™+1.

Let 8™ = { (#1, %2,y Brig1) ER™! | 23 4+ 22 + (Bopn—a)® =06 }. The
stereographic projection coordinates of S™ is the map ®© - S™ — {0,0,...,2a} —
R™ given by

201, 20,
DT 5 oy By Bt ) =2 | 2 :
Za — Ty 24 — T
This map defines coordinates (£1.&q, ..., &,) on S™ so that the point (z1,Ta, ..., Tn, Tna1)
of 8™ has coordinates (&1,8a.....&n" where,
2a1, 2azx,,

’ gn_

2a — L1 20~ HEIRS |

& =



The inverse map is given by

4a%€, B 4a%¢,, Pai(El = vuspE2 = 1)

€y = Lntl =

o :"':'T“ — 1 == -
£ g+ 2P © T Gk @ da? &+ -+ +da?

Definition 1.3 The points of the n-sphere with center at the origin and radius
a may also be described in spherical coordinates in the following way:
x1 = acos bt sinfysinfs...sinf,,_, sinf,
T2 = asinf sinfssinf,...sinb,_; sinf,
Ty = acosfg_18infy...sind,_1sinf, for k=23,4,...,n
Tny1 = acosd,,

where
0<80;, <27, and 0L<6; <7 for i=2,3,..,n.

From now on ), will be denoted by .

1.2 The Laplace-Beltrami operator

Using the spherical coordinates, the Laplace-Beltrami operator of a smooth
function f on S™ is

1 L. LI
Bpf=pe— - 3 = det{g)- > g7=-1, 1.1
A }; 7 | Vet (9) 295, (1.1)
where
det(g) = a®" [ (sin6))**V
E—2

g9 =0,ifi#j g¥= . and 0, = ¢
; ! a?sin?8;,, - ... sin0, & ’

If f is independent of #4,0s,...,0,_;, the Laplace Beltrami operator of f is

of o
Anf:a—Z((nl)cotap-é-}-%é). (1.2)

Example 1.1 Using the spherical coordinates. If M = S?%, i.e.

5% = {x = (acosOsiny,asinfsinp,acosp) ER*|0<h <27, 0< < 7}

We have: P
Ty = ﬁfg = (—asinfsiny, acosfsinep,0)
‘
0s
dor= 5"2 = (acosfcosy, asinf cosp, —asinp)



- ToTp TeTy
9= 19 T LY Tl

9=igu]:( ng 0 )

-1 ij ﬁl}?—o
gr=l R TET g )

a?

and

Hence the Laplace-Beltrami operator of a smooth function f on 52 is

L foo ‘ :
Agf = pEpE (sint,o + focosp + fuo suup) : (1.3)
In the case where the funclion [ is independent of  the Laplace-Beltrami oper-
ator of [ is

Daf =

Pon (focosp + fopsing). (1.4)

Similarly the Laplace-Beltrami operator of a smooth function f on 5% is

1 a%f 1 d f 2
A = Lo S sin £ e Yoty
3f a?sinfysin® @ 907 a?sinfysin® @ B0 ( g 092) a?sin’® @ dg (
( 5)

1.3 Brownian Motion on a compact and smooth Riemma-
nian Manifold M

Definition 1.4 Lei M be a compact and smooth Riemannian manifold and A
its corresponding Laplace-Beltram: operator. The unique solution of the differ-
ential equation

8P
ot
where A, 1s A acting on the $—vaﬂ:ablcs and the initial condition

1
AP =0, (1.6)

P(t,z,y) = 6:(y) as, &—0F L7}
(where 0, (y) is the delta mass at © € M) is called the heat kernel on M.

It has been proved by J.Dodziak [3] that the heat kernel always exists and is
smooth in (¢,z,y). Moreover the heat kernel possesses the following properties.

1. Symmetry in z,y, that is

P(t1$ay) = P(tryaﬂ:)
2. The semigroup identity: For any s & (0, 1)
Plt,zm)= / Pls,z,z)P(t — s, z, y)dp(z)
-

where du is the area measure element of M.

@»0)



3. The total mass equality; Forallt > 0and z € M

Pt z,y)du(y) = 1. {1.8)
M
4. Ast — oo, p(t,x,y) approaches the uniform density on M, i.e. p(t, z,y) —
¢ where,

1
“T Area(M)

Definition 1.5 The Brownien motion X, t = 0, on a Riemannian manifold
M is o Markov process with transition density function P(t,z,y), the heal kernel
associated with the Laplace-Beltrami operator.

The case of "

In the case where M = 5", n > 2, the transition density function P{¢,z,y) of
the Brownian motion X; depends ouly on ¢ and d(x,y), the distance between z
and y. Thus in spherical coordinates it depends on ¢ and the angle » between
z and y. Hence the transition density function of the Brownian motion can be
written as

P(t,z,y) = p(t, @) (L.9)
where p(, @) is the smallest positive solution of
dp 1 1 ap  9%p
— ==Ap=— — 1) cotp - — i
5 = 3t P 52 ((n ) cot @ 5 +8c,02 (1.10)
and
lim adn_1p(t, ) -sin™ (@) = §(p). (1.11)
t—0+

Here ¢ is the Dirac delta function and A4,, denotes the area of the
n-dimensional sphere 5™ with radius a.It is well known that

27 F g
A, = —W, (1.12)
2

where I'(z) is the Gamma function. More precisely

2% g™
An e for n odd (113)
(=)
27(2 —1)Ir3g" ) ,
An = W for n even (114)

Remark 1.1 The fact that S™ is a compact and smooth manifeld implies that
(1.10) - (1.11) has a unigque positive solution which also satisfies

[ pleduty) = 1. (115)

Furthermore, as t — oo,  p{t,z,y) approaches the uniform densily on S™, i.e.
p(t, z,y) = ¢ where,



Lemma 1.1 Ifs> 0 and z,v € C, then

5 . 72 —mn?  wyn .

Z exp (—s*(z + n)? —iyn) = @ exp (wz - 4iz> Z exp ( =Tl ,:2 + 27rv.zn.)
neZ neL

(1.16)
Proof
Poisson summation formule is applied to the function

f(x) =exp(—Az*+Bz), A>0, BeC
i

2 Transition density function of the Brownian
motion on S', §% and $°

2.1 The Case of S!

Let X;, £ > 0 be the Brownian motion on a 1-dimensional sphere S of radius
a.The transition density function p(¢,¢) of X, is the unique solution of

dp 1
—_— = = A .
i 5 1P (2 1)
and
lim a-p(t,) = 5(p) (2.2)

t—0+

Here A is the Laplace-Beltrami operator on S1. Therefore we have that p(t, @)
is the unique solution of
dp _ 1 &plty)

B 27 9 (4)
and
lim a-p(t, @) = 6(p) (2.4)
t—0+

Proposition 2.1 The transition density function of the Brownian motion X;, ¢t >
0 on S with radius a is the function

(t,0) 1 n%t L4 25)
5 = — ex —— n 5 i
P8P = Sra HZEZ Pl Togz T

Remark 2.1 The function (2.5) can be also expressed in the following ways

i) = = 2 oo (38 ) st | — 52 (2:6)
" Pt ) = % 3 e (—‘;—t (- mf) . 27



2.2 The Case of §2

Let X;, t > 0 be the Brownian motion on a 2-dimensional sphere 52 of radius
a. From the (1.10), (1.11) and (1.13) the transition density function p(t,p) of
X: is the unique solution of

ap 1 "8%p(t,p) . op
g T = 11110 + —— CosS W 2.8
ot 2a?sing ( Dip? SHRe ) SR (2:8)
and
lim 27a®sing - p(t, w) = §(w). (2.9)

t—0+

The solution to the diffusion equation

K(t, @) 1 0K (i, 2K (1,4
m = — cos (p(_M + 5in UQ__E’__Q)\ (2.10)
at sin g Ao wt g
with initial condition
Iim 27 sin{p) K (£, ) = §(yp) (2.11)
t—0+
is given by the function
1 ; < <
K(t,p) = ir %(2” + 1) exp (ﬁn(n = 1)\/2_t) P (cosw) (2.12)
see [2].
Here P? is the associated Legendre polynomials of order zero, i.e.
1 dn,
Ofo) — asy .
Pn(‘I’) i Znﬂ! d.’l:"‘ (‘L ]') (213}

This fact implies the following

Proposition 2.2 The transition density function of the Brownian motion X,
t > 0 on 8% with radius o i is given by the function

(_n(n + 1)t

1
Pt )= 1= ;(2‘” +1)exp

) P%(cos ) (2.14)

2.3 The Case of 5°

Let X, £ > 0 be the Brownian motion on a 3-dimensional sphere S% of radius
a. From the (1.10), (1.11) and (1.14) the transition density function p(t,y) of
X is the unique solution of

dp 1 9% . 9p
2% g2 (([‘)_(,02 + 2 cot 1;’)5;; (2.15)
and
t111[1}1+ 4ara® - sin® (@)p(t, ©) = §(;p). (2.18)

The function p(t, ) salisfies:



p(t,0) >0 for every (t,p) € RY x [0, 7]

47{(13/ p(t, ) sin® pdw = 1

0

o

where

Proposition 2.3 The transition density function of the Brownian motion X, t >
0 on S% with radius a is the function

p:RY % (0.7) = R,

with
exp (555) (2tm) "% (¢ + 2n7)2a?
t = 20 + 2n 2> o e 2
p(t, ) s > (g + 2nm) exp T (2.17)

nei

Proposition 2.4 {fy € (0,7) The funciion (2.17) can be also ezpressed in the
following ways

(t,0) d S ne B =) (2.18)
= —— xp{ ———— .
PR 47203 sin = P 2a? et
and 5
1 . tn® — 1)
TR DR . =P ;
Pb9) = Gy .gmm(mp) exp ( 55 ) (2:19)

Remark 2.2 Formula (2.19) implies that p(t, @) is analytic at o = 0 andp = 7
and

(n?-1)
p(t,0) = {p]ﬂn pt, ) = ‘?"r‘ s ;wn exp( ¥ ) (2.20)
and
t(n? —1)
plEm)= (Plim »(t, @) = 2@3 %n ™ exp ( T) . (2.21)
Reminder

The 193 function of Jacobi is

Pa(z,r) =142 Z exp (iﬂ’f‘ﬂg) cos(2nz), (2.22)
N

where r € C with Im{r} > 0.
It follows that

1 t 8193 (2 i Zu‘ )
Pl == ang °F (5;) T (&2}



3 Exit times

We recall some basic definitions.

Definition 3.1 Let us consider a measurable space {Q, F} equipped with o fi-
tration {F;}. A random variable T is o stopping time with respect to the filtra-
tion {F¢}, if for every t > 0

{we QT (w) <t} e F.
Let X: be the Brownian motion in 5" and D C 5" a domain. Then
T =inf{t > 0| X; ¢ D}

is a stopping time with respect to ;= 0{ X,|0 < s < t}, called the exit time
of D.

3.1 Expectations of exit times on S"

Proposition 3.1 Let p1,902 € (0,7), such that o1 < @s, both fizred. We
consider the set D in 5%, such that

D= (p1,09).

Of course,
OD = {1, pa}.

If X, is the Brownian molion on St starting at the point
we D,
then the expectation of T is given by
E*[T] = —a® (¢~ 1) (p — p2) - (3.1)
Proof.

It’s known that, (see [4]},the function E¥[T satisfies the Poisson equation on 1)
with Dirichlet boundary data. By the unique solution of this equation solution

u(p) = E?[T]

is the unique solution of the differential equation
1
§A1u = —-1, (32)

with boundary condition
u(tp1) = uip2) = 0. (33)
Hence '
u(p) = —a® (p — 1) (0 — 2) .



Proposition 3.2 Let py € (0,7) be fized. We consider the set D in S™,n > 2,

such that
D={(0,...,00_1,9)|6: €[0,27),8; € [0,7] for i=2,.
Of course,
D = {(81,...,0n-1,9)61 €[0,27),6; € [0,7] for i=2

" starting at the point

If X, is the Brownian motion on S
A = (91:'“ )On-—lalp) € Du
then the expectation of T is given by

©o .];Jw(sinw)“"ldw

EA[T] = 24° / L e Ko

i (sinz)r—1
Proof.

It is known that [4],
U{|91,.,.,19n_1,(,(3} = EA[T}

is the unique solution of the differential equation
|
=Apu= -1,
L

with boundary condition

u(91) b=l :9n—11(190) = 0.

Here A, is the Laplace-Beltrami operator on §7.

oan—1

i o =)

and € [0,40)}.

and = g}.

(3.5)

(3.6)

By the symmetry of D, it follows that the expectation value of 7' is indepen-
dent of &;,...,0,,_1. Hence u is independent of 0;, for i =1,...,n— 1. The

differential equation (3.5) takes the form

1 du  d*u
-2;5 (:"L = 1} Cf)t((ﬂ)@ -+ a—g;é':! == —J.,

with boundary condition

u{ipg) = 0.
Set

Fi ) _ d_u

JTip)= e

Hence from (3.7)

Py {(ﬂ ~ 1) cot() f() + ——dj;i’” —
or )
(n - 1) cos() f () +sin(go)_fd%al = coopPunle,

(3.7)

(3.8)



multiplying by (sing)®~2 implies that

d ) _
(n — 1)(sin©)* "2 cos(p) f{) + (sin 5;7)”_1—{[%;22 = —2a?(sin )™ L.
Thus i ¥
a . yr—1 C1
= ¢ dw + —————.
1(g) (sin)n—1 ‘/D e (sin )1
Therefore
@ ]'m(sin W)™ dw i 1
U = — 2 AV U d - ‘—“‘“—“—‘—‘—d—: 39\
u(y) 40 -/0 (sinz)»—1 L5 _/0 (sinz)n—! k- (3:9)
However
we (0,00) , ulp)=ET]< oo
Hence
Ci = 0.
Furthermore
?e (¥ (sinw)™ ' dw
ulpg) =0, ie ¢ = 24> io(_#da:,
0 (s1mx)™=1
thus,

wlid) =2 f% ) ((sinw))“ dwda;.

sinz)n—1

]
Remark 3.1 Notice that u(y) is an elemenlary function since the integral can
be computed explicilly for every n > 2.
Example 3.1 Let @y € [0.7) be fired. We consider the set D in S2, such that
D={(0.9)|6 €[0,27), and p&[0,p0)}.

Of course,
OD = {(0,p)|6 € [0,2n) and = y}.

If X; is the Brownian motion on S? starting ot the point
A(d. ) € D,

then from (8.4) the expectation of T is given by

BAIT) = 20?Mn | 179959 ) (3.10)
1 4 cosg

Example 3.2 Let @y € [0,7) be fized. We consider the set D in 53, such that

D= {(911921 (p)*@l € [01 27T),92 € {D! ﬂ-] and pE [09900)} E

10



Of course,
OD = {{01,02,0)| 61 €]0,27),82 € [0, 7] and ©=pg}.
If X, is the Brounmian motion on S° starting at the point
A= (8,,02,0) €D,
then from (8.4) the expectation of T is given by
EA[T] = a® (pcot ¢ — g cot ) . (3.11)

Proposition 3.3 Let @y, @2 € (0,7), such that w1 < g, are both fized. We
consider the set D i §™,n > 2, such that

D={(81,....0.-1,0)].60€[0,27).8; € [0,7] for i=2,....n—1 and € (g1, p2)}.

Of course,
OD = {{(61....,0h_1,0)|, 01 €]0.27),8, € [0,7r] for i=2,...,n—1 and

o=@y or Y= }.

If X is the Brownian motion on S™ starting at the point
A=(bh,...,0h1,0)€D

then the expectation of T is given by

xpo n-1
i )1 e Jp S H
?1 f, (sinw)™ dw lemzyn=T 0T ¥ 1

EA Gt B .2 / : "gl‘
7] ¢ sa (sin z)7—1 et i L dz

il (sina)n—1

dx

(sing)r-1

(3.12)

#i4pyg

Proof.

By the solution of the stochastic Poisson problem (see [7])
u('gh G :811—11{p) = EA{T]

is the unique solution of the differential equation (3.5)

ie. ]
§ AH’U. = “11

with boundary condition

Uy, oo il 93001 =001 oo Bpsitpa) = 0

Here A,, is the Laplace-Beltrami operator on S™.

By the symmetry of D, it follows that the expectation value of T' is indepen-
dent of ¢y,....6,_1. Hence u is independent of 0;, for i=1,...,n — 1. The
differential equation (3.5) takes the form (3.7) with boundary condition

w1, Op1,00) = u(br, ..., By, 2) = 00 (3.13)

11



Hence from (3.9)

fo sinw)™ tdw g 1
—2q2 e ————dz + ¢y
o {sing)nr=?

(sin )71
However
(gia S - 1,01, = 11’(‘}11 cee «,Hn—hlﬂ?) =0,
Thus
w2 fu'“(sinw)“‘irlud )
2Jp1 (sinz)“ 1 %
c1 = 2o o ;
Jipy (=m1.}“ rd
and

; 4 (sinw)™ Vdw
1 [Feina) L dw f” LL_TCLL 1 i

¢ = 2a° j Jo'{ ) i T8, B . / E—-u*dﬁ:

0 0

{sing)"—1! :12 mdm sin z)n~1
Therefore
o {sinw) dow
P [ (sin W)™ Ldw ) iy o Fil TR Tl # 1
EAT] = 247 / Jo ( - ) i+ e Ll f R Ty
? (sinz)" Je1 de ¢ (sinz)™

]
Example 3.3 Let @,,¢2 € (0,7), such that ) < g, are bolh ficed. We
consider the set D in 52, such that
D ={{6,9)|0 €[0,2r), and p€ (p1,92)}-
Of course,
oD ={{0,¢)|f€]0,2r) and o= or =1y, }.
If X; s the Brownian molion on S? starting at the point
= {6, p) € D,
then from (8.12) the ezpectation of T is given by

- da? cos (£} sin (%) cos (£L)
BT = o (zan(i,} ) [In (cos (%3)) 40 (sm (4“’2—1)) ~H ( cos(%)

tan(%’-)

(3.14)

Example 3.4 Let 1,00 € (0,7), such that ¢ < g, are both fized. We
consider the set D in S%, such that

5 = {(01.()2,(,0)'01 S {0,271’),02 S [0._‘11'}, and € (901,(,02)} :
Of course,

(?D:{((ﬂ‘l.,ﬁ’g,ga)lﬁl6[0,271'),92620.,71‘] and W = or Y =y }

12



If X, is the Brownian motion on S* starting at the point
A= {(0,02,p) € D,
then from (8.12) the expectation of T is given by

BAT] = a® [(¢ — 1) cot g eot g1 + (w1 — w2) cot ip1 cot w2 + (2 — ) cot o cot ]
cot 1 — cob s '
(3.15)

3.2 Hitting probabilities

Proposition 3.4 Let o1, @9 € [0,27), such that @) < i, are both fized. We
consider the seis Dy, Dy in S', such that

Dy = (p,27) and Dy =[0,w).

Of course,

8D1 == {Lp]_} . and dDz = {fpg} 2

Lei X, is the Brownian motion on S' starting at the point

A e DN D,.
Iy
T} '—_-}l'lf{tz OI:Xi’ §é Dl},TQ :]Hf{tz Ol,Xt ¢ Dg}
and
T:mf‘{tZULX; ¢D10D2},
then.
PrA{T =T} = PP ung P {1 =Ty} = F (3.16)
w2 — p1 w2 — @1
Proof.

It is known that, (see [6]), the function
u(p) = Pré{T =Ti)

is the unique solution of the differential equation

lA =0 3.17

5 1% = (3. )
with boundary condition

u(p1) =1 and u(wq)=0. (3.18)
Here Ay is the Laplace-Beltrami operator on S'. Hence
ol = T
P2 — ¥1

Therefore

PrAT=T}=22"% and PA{T=Tp}=2"%
P2 — @1 Y2 — 1

13



Proposition 3.5 Let @y,2 € (0, %), such that ¢y < a, ure both fired. We

consider the sets Dy, Dy tn S™,n > 2, such that

Dy ={(01....,00-1,9)|.0, €[0,22),0; € [0.7r] for i=2,...,n—1 and ¢ € (1,7}

and

Dy ={(01,-- ,0n_1,9)|,0: €[0,27),8; € [0,7] for i=2,...,n—1 and @€ [0,p2)}.

Of course,

0Dy = {{b1,...,0a-1,0)],01 €[0,27),0, € {0,7] for i=2,...,n—1 and ¢=}

and

0Dy = {{th,....0nh-1,9)], 01 € [0,27),0;, € [0,7] for i=2,....n—1 and ©=p,}.

Let X, 45 the Brownian motion on S™ starting at the point

A= ('91)‘ : ':'gra—_l,‘ﬁ) = D1 N Ds.

If
Ty =inf{t>0]|,X; ¢ D1}, To=inf{t > 0|, X, & D3}
and
T:]ﬂf{tz D]:Xt ¢ D] ODQ},
then
ik “‘“—1;.le' £ "-l—,wd:ﬁ
Pré {T'=T1}= f‘fgz (smml) i and Pr” {T="Th}=- 9;12 (Smﬂ} :
w1 (sinz)”‘ldz J.,gl (sin :z:)““ld"'v
(3.19)
Proof.
It is known that (see [6]),
‘U‘(Bl: v -.Bn--'.l-nlp) = PTA {T = Tl}
is the unique solution of the differential equation
1
§Anu =0, (3.20)
with boundary condition
w(f, .., 0poq,1) =1 and wu(fr,....0,_1,02) =0

Here A, is the Laplace-Beltrami operator on S™.
By the symmetry of D, it follows that the probability of T =T}

is indepen-

dent of &;...., {',-1. Hence w is independent of 0;, for i =1,...,7n—1. From

(1.2) the differential equation (3.20) takes the form

1 du  d*u
-ﬁ |:(Tf. = 1) COt((,D)E + w:{

1

14

(3.21)



with boundary condition

u(pr) =1 and wu(ws) =0. (3.22)
Set ;
du
hence from (3.21)
1 df
o5 |- Deotle)se) + L o,

(n - 1) cos(y) f{v) + sin(p}%{@ﬂ —ifj.

Multiplying by (sing)"~2? implies that

df
(n — 1)(sing)™ 2 cos(ip) f() + (sinp)™! -%E;?l =0,
or
d : n—1
I [(sin )™ ~* f()] = 0.
Thus c
. 1
f((p) - (Sin (’0)“7‘1 ]
ie.
() f . S (3.23)
i = ——————dx + 3. K
P o (sinz)n! %
However
u(p) =1 and u(ps) =0,
hence - g
By e gl gy A ERGETOE
w1 (sina)"— d 1 (sina:)"‘ldz
Therefore
v ;,,Ad'l, £ %‘dl‘
P?"A {T — Tl} = ——————————————-—f(ﬁ” (s:tanl) : d - and P'J"A {T = Tz} = —————————i; (Smxl) d -
py (sing)n—1 E 1 (sing)n—! 2

Example 3.5 Let 1,2 € (0,7), such that @1 < o, are both fized. We
consider the sets Dy, Dy in 5%, such that

Dy ={(6,9)],0 €[0,21) and ¢ € (ip1,7]}

and )
Dy ={(0,9)|,0 €[0,27) and € [0,2)}.

15



Of course,
aD1 = {{0,)], 6 [0,27), and ¢ =}

and
9D, = {(G,LD)I :81 £ 10127'_}1 and = lch}'

Let X, is the Brownian motion on 52 starting at the point
A= (0,9) € DyND,.
17
Tl = 11J{t ;_"‘ Ui, Xt ?’é D1},T2 = ‘.nf{f 2 G’I,z‘{t 6*_': Dg}

and

= i.l’lf{t :ﬁ Di,)&rt §é D1 ﬂDz},
then from (3.13)

pf

wilG

. tz-m( e ) t.nu( 5")
. t ( tan(‘ )_ 4 In tnn{%‘-)
Pri{T=T}= -w( 3 and Pro{l =T}=———""2
tan
In (W)
Example 3.6 Let g, € (0.7), such that ¢, < g, both fired. We consider
the sets D, Dy in 53, such that

S|

Dl = {(91392:§9}i :91 € [0,27{},92 € [Orﬂ—] and wE (‘Tﬂ’l?ﬂ-]}

and
’D2 s {(917 92:90)1 ?'91 = [0‘ 2’”’):92 & [Ds ?T} Qﬂd 172 € [01 LPZ)} -
Of course,
oD, = {{91,92,1{3‘” 8, € {0, 2’;‘?),192 & [O, ‘FI'] and = (,01}
and

9Dy = {(#1.92,¢0)| 6, € {0,27),0, € [0,7] and = ,}.

Let X, is the Brownian molion on 5% starting at the point
A = (191,19-2,(,0) € Dl ﬂDz

If
Ty=inf{t=20,X, ¢ D1}, To=inf{t>0|,X, ¢ Dy}

and

T=inf{t>0,X; ¢ DinNDy},
then from (3.19)

cot @ — cot gy t o, —
PT'A {T = Tl} = _.u and PT'A {T . T2} _ CoL cot
cot 1 — cot g cot p — cot i

(3.25)

16
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Asymptotic behavior of the solutions of a
class of rational difference equations

(3. Papaschinopoulos, G. Stefanidou,
Demorritus University of Thrace
School of Engineering
67100 Xanthi
Greece

Abstract

In this paper we study the asymptotic behavior of the positive
solutions of the rational difference equations

k
azn—?k—lHIn—Za'
. - ALn—m(k+1)+1 2 - I
wntl — & 1 n+l — 2k+1 7a

R 1
Hltn—m(.s-f-l)-l—l -1 H Tp—s T H*’UTL--QS - Ha:n-—?s—l
s=0 5=0 5=0

s=0

ALnLn—m(k+1)+1
Tn+1 = _#' n=0,1,.,
Ty +3’n—m(k+l)

where k,m € {1,2,...} and a is a positive number.

Keywords: Difference equation, periodic solution, convergence of the solu-
tions.

1 Introduction

In [8] the author studied the global behavior of the second order rational
difference equation having guadratic term

ALy

e g 35 0 B 0 1.1
TpTn—1+b ¢ (1.1)

In+l =



and the third order difference equation having quadratic term

GLpZTn—1

—_—,a>0,6>0 (1.2)
Ty, + 0Ty 2

Tn+1l =
where x_a,x_1, 29 are real numbers. For the study of equation {1.1) the
author used the fact that (1.1) reduces to a linear nonhomogeneous equation.
Moreover, for the study of (1.2) he showed that equation (1.2) reduces to
(1.1).

Furthermore in [3] the authors investigated equation (1.1} with nonnega-
tive initial values ©_1, zg. Moreover if we get b = 1 in (1.1) then by dropping
either the term z,, or ©,— in the denominator of the equation (1.1) we ob-
tain the equations

Qlp—1 z _ Q%p_1
PRl = T e
i o B L -1

Tn+1 =

which have been studied in [2]. Finally, results concerning rational differ-
ence equations having quadratic terms are included in [1], [3]-[11] and the
references cited therein.

Now in this paper we study the following equations

ALy —m(k+1)+1
Tppl = —— Lkt g =001 (1.3)

H:Enfm(s+1)+1 +1

5=0

k
ATp-2k—1 Hfﬂn—Qs
s=0

Tntl = 5 K k (1.4)
H Tn—s + Hﬂin*zs + Hiﬂn—Qs—l
s5=0 s=0 s=0
and
OTn Tk
O o S L (1.5)

?
Tn + Lp—m(k+1)

where a is a positive number, m,k € {1,2,...} and the initial values of
the above equations are positive numbers. More precisely, we study the
existence of periodic solutions and the asymptotic behavior of the positive
solutions for equations (1.3)-(1.5). We note that equations (1.3)-(1.5) have
a common property: They reduces to a linear nonhomogeneous equation.



2 Siudy of equation (1.3)

First we study the existence of positive periodic solutions of period m(k+1)
for equation (1.3).
Proposition 2.1 Consider eguation (1.3). Suppose that

a3 L. (2.1)
Then equation (1.3) has periodic solutions of period m(k + 1}.

Proof. Let z, be a positive solution of (1.3) with initial values ©_p(q1)41,
T_m(k+1)+2s -+ To are positive numbers such that

k

Hmi_,n_(s.l..l)_i..l =a—1, 1=0,1,....m— 1. (2.
s=0

o
(S
~—

We prove that z,, is a periodic solution of (1.3) of period m(k + 1). From
(1.3) and (2.2) we get

AT —m(k+1)+1

= - = Temlk+1)+1>
Hf—mgs+1)+1 1
5=0

o AT (k1) 42 L

Tz =~ = Tem(k+1)42;

(2.3)

H-‘E—m(s-»-l)+2 =l
s=0

ascfmk ............

Ty = = = T—mk
fo'}ns +1
s=0

Then from (1.3) and (2.3) we obtain

# _ AL —f+1 o AT —mk+1 _
m+1 — P = & =
$1H$—.-ns+1 Tl w—m(k‘H)JrIHa;—msJ.—l ik
s=1 s=1
AT —mk41 .
% = T—mkt1-
H‘I"—m(5+1)+l + 1
5=0



Working inductively we can prove that
Tmtj = Tomk+y, J=2,3,..

and so the proof of the proposifion is completed.
[n the next proposition we study the asymptotic behavior of tle positive
solutions of (1.3). We need the following lemma.

Lemma 2.1 Let x, be an arbitrary positive solution of (1.3). Then the
following statements are irue:

(i) If
k
t”:erzism,s T =ik @y e {24)
s=0
with
k
t-j - ij_jsm? j=1-m,2-m,..,0, (25)
s=0

then t, satisfies the nonhomogeneous linear difference equation

1 1
= —1, —m, . = .‘1,... 2
Yn+1 aynn.+1 m + o i 0 ( 6)
Moreover,
Bn+£, = 15 2 ifa=1
m
b = n (27)
! ;B - ! =192 fa#1
= Wt ——p, n=12.. ifa
where
-1
- _— o mg if m is odd
B, = Zq cos( TWn) + d; sin(ﬂ), =
i=0 m.. m m . .
7 if m is even
(2.8)
and c;,d;, i = 0,1, .. are constants which are derived from (2.5), (2.7)
and (2.8).



(iz) If _
yﬁ;') = Tkt ntg> J =01 (k1) =1

then

n-1
: ; Ltk x o
ygj) _ yé})H m(k+1){s+1)+7 mi j=0,1,..,mk+1) - i.

s tmlke+1)(s+1)+j

Proof. Let z,, be an arbitrary solution of (1.3). Then we get
k

ATp—m(k+1)+1 H:En +1—sm
s=1

ke
Ii[xn-Hﬁ(sJ.—] Jym +1
=0

k‘
T4l 1__[3"'.'&4—1 —sm —
s=1

which implies that

k
k O‘HTCnJrlf(sw}-l)m
5=0
Hxn+1ﬁsm. = P
=0
° H:En+1—(s+1)'m. el &
s=0
Then from (2.4) and (2.11) we have
a
1 o tn-{-l—m
b : +1
bnti—m

(2.9)

(2.10}

(2.11)

which nnplies that t,, satisfies the difference equation (2.6). Then relations
(2.7) and (2.8) follow immediately. This completes the proof of statement

().

(i) From (2.4) we have

=L =1 :
b Tn Tplm Ty pm _ Tn-m(k+1)
e =1 T
n

[ T "B e T

which implies that

1 .
Ly = Lt‘ﬂwn—m(k-!-l)z n= 1a2:
n

(2.12)



So, from (2.9)) and (2.12) it holds

yl), = BTG gy mer 1) -1 (213)
o 'Em.[.fc+1)(n—é—1)—i—j

Therefore relation (2.13) implies that (2.10) is true. This completes the
proof of the lemma.

Proposition 2.2 Consider equation {1.3). Then the following statements
are true.

(i) If
0<a<l1 (2.14)

then every positive solution of (1.3) tends to zero as n — co.

(1) If (2.1) holds then every positive solution of (1.3) iends to a periodic
solution of period m(k + 1).

Proof. Let =, be an arbitrary nositive solution of (1.3).
(1) Suppose first that
Brgeil, (2.15)

From (1.3) we get for j =0,1,...,m(k +1) -1
Tkt Dnti < OFmk+1)(n—-1)4+5 <~ < a"Z;. (2.16)
Then from (2.15) and (2.16) we take
Jm T eiayngs 00 7 =0,1,m(k+1) — 1

which implies that z;, tends to zero as n — co.
Let now a = 1. We consider the functions

T, n—1
. £ . i ik i
AY) = 1n (H fiadita s Vi ’”’) =5 :m( bl s m). (2.17)
s=0

o Imlr1)(s+1) 45 bm(k+1)(s+1)+5

From (2.8) it is obvious that

Bm.(k-!—l)(s+l)+j—wa = Bm(k+1)(s+l}+j7 s =01, .7 =01, s m(k i 1) =1
_ (2.18)
Hence relations (2.7), (2.8) and (2.18) imply that

tm(k+1)(s+1)+jfmﬁt-m.(k:+1){.9+1)+j =-1, §=0,1,.., 7=0,1, '-'a'm(k+1)_1'
(2.19)



In addition, if a is a real number such that 1 +a > 0 then
n(l+a) < a. (2.20)
Then from (2.19) and (2.20) we get

n—1

+j—rn t-m. c s /
Zl” 14 bnfk1)(s4+1) 5 (k+1)(s+1)+7 <
| Ln(k+1)(s+1)+j

n—1

n—1 (i’ ) o ) ) 1
Z m{k+1)(s+1)+j—m m(k41)(s+1)+7 _ _Z

=0 brn(k+1) (s+1)45 (k1) (s 1)
(2.21)

Since from {2.7)
oo
2=
ps otm<a+1)(s+1)+s

then from (2.21)

Zln ( n(k F1)(s+1)+5— m) R (222)

n(k4+1)(s+1)+j
Therefore, from (2. 17) and (2.22) we have

lim A =-co, j=0,1,...,mk+1)—1

n—oo

which implies that

(]
tv??.(k«l» 1)(s+1)+j—m

=0, 7=0,1,..,m(k+1)—1. (2.23)
oo Imkt1)(s+1)+5

So from (2.10) and (2.23) we have that z, tends to zero as n — co. This
completes the proof of statement (i).
(ii) If @, b > 0 then using (2.20) we can easily prove that

| In( = )|<]a*b|max{ }. (2.24)

Then from (2.24) we have for 7 =0,1,...,m(k + 1) —

n—1 =

Zln b (k+1) (s+1)+j—m Z m(k+1)(s+1)+j—m <

= bn(k4+1)(s+1)+i " bkt 1) (s+1)+5

n—1 1 1
th-m(.iz+l)(s-i—1}+j—m — b (k1) (s+1) 45 I’ﬂ&X{f >

S ‘m(k+1)(s+1)+7 bm(k+1)(s+1)4j—m

(2.25)

b



Furthermore, from (2.1), (2.7) and (2.18) we have

mk+1)(s41)+7
it-m(k:Jr])(.‘-‘—%-'l)Jr*j—‘m_'—tm,(k—i-lj(s—!—l).{.j! = (E |B-nl(k+1)(.e+1)+j](“—l)-

(2.26)
Then using (2.7) and (2.26) we can prove that there exists a positive number
M > 0 such that

1 1
B iy = Loalbrritersi sl mﬁx{ , } =
m{k+i){s+1)+j—m i Jes+D+i tm(k+1,){s-i—1)+_-i tm(k+1)(s+1):—j—m

mk+ 1) {s+13+7

1 m
M(#) 5 =0,1,...m(k+ 1) — L.
42

(2.27)
Therefore, from (2.1), (2.25) and (2.27) it follows that

Eﬂ t'm.- k+1)(s +j—m '
Lln ( Seat b )] < 0o. (2.28)

=0 Enkrn)(s+1) 05 /|

Then using (2.17) and (2.28) it is obvious that there exist the

im AY) =1, <00, j=0,1,..,m{k+1)— 1. (2.29)

n—oo

Relations (2.9), (2.10), (2.17) and (2.29) imply that
lin;a"":m(k+l)ﬂ+j - p_',' < o, j - 01 1: 1m(k =+ 1) =1.

—

This completes the proof of the proposition.

3 Study of equation (1.4)

First we study the existence of positive solutions of period 2k 4+ 2 for the
equation (1.4).

Proposition 3.1 Consider equation (1.4} where
o 2 (3.1)

Then equation {1.4) has positive periodic solutions of period 2k + 2.



Proof. Let @, be a positive solution of (1.4} with initial values such that

k k
Hw_gs — H:r;_gs_l =qa—2. (3.2)

Then from (1.4) and (3.2) we get

k
AT —9)— 1113;—25

ala = 2)T_gp—1

s=0
Ty = ; = = T-2k-1
2+1 k k (a—2)2+2(a - 2) ’
H T_g+ To2g + Hz---Zs—i
s=0 s==0 5=0
k
Gl‘l-'cf‘zkl ]_.371—2.9
. §=. -
T2 = Tkt 3

o -
Ty H Tt $1H1'1-25 + H$—25
=1 s=1 5=0

%
ar_9k-1T—2k HIL—QS
3=

2k+1 k k -
To-2k-1 H Ti-s +Togk-1] |Z1-25 + Hr-zs
s=1 s=1 s=0
k

ATk Hm—Qs—- 1
=0
2k+1

k k
s=0 s=0

s=0
Working inductively we can prove that

_alo—2)z g
 (a—-2)24+2(a-2)

= Tk

Tp = Tp-2k-2, N = 3,4,

This completes the proof of the proposition.
In the following proposition we study the asymptotic behavior of the
positive solutions of (1.4). We need the following lemma.

Lemma 3.1 Let z, be a positive solution of (1.4). Then the following
statements are true:



(i) If
by = Hm Lo ML (3.3)
with

H»crqg, j=-1,0, (3.4)

then t,, n = 1,2, ... satisfies the following difference equation

1 1 1 ;
Yn+1 = 5yn+zb_'yn—-l +;, n=01,.. (3.5)
Moreover,
1% 1 '
cl(_iz")” gy il B L2,.. ifa=2
by = (36\
1
c1p’f+f:gp3'+——2, n=12,.. fa#2
o —
where 1 1
P1=5-(1=V1+4a), pr=—(1+vVI+4da), (3.7)
c1, ¢z are defined from (3.1) and (3.6).
(ii) If
yr(ij) = T(k+1)n+js Fe=0,1,., 2k 4 1 (38)
then

1
J} - J')H 2(k-+1)(s+1)+5-2 , §=0,1,....2k+1. (3.9)
ba(k+1)(s+1)+5

Proof. (i) Let x,, be an arbitrary positive solution of {1.4). Then we get

k k
k ﬂmn—?k—lnxn—zsnxn-—h—l—l
$11+1H1'-n—23+1 %1

s=1
H Tp—-s + H:[:n 2s + H’Ln 25—1

10



which implies that

2k+1
k L
) 5=0
ﬂfrn—%Jri = Sktl kg s ; (3.10)
=()
’ H Tn—s T H:ﬂnu‘z.& + HCC-n—‘Z.-;—i
5=0 5=0 5=0
Then relations (3.3) and (3.10) imply that
' a
! _ Intn—1
tﬂ.‘!’l 1 ] “_j; 4 1
s ok

] n.t'n.——l tn t-n.-“l

from which we take that ¢, satisfies the difference equation (3.5). Then
relation (3.6) follows immediately.
(i) Using (3.3) we Lake

g St | -1

tn  Ta Tplo Ty op Tn_ok_2
- -1 -1 1 - .
b2 T aTo T Ty oy g T
which implies that
tn—2
In = ¢ Tn-ok—2, n=12,.. (311)
i

So, from (3.8) and (3.11) it holds

N
y,(;”:i—“‘iﬂi"ﬂ—zyﬂl, i U, Ly e 1, (3.12)
2(k+1)n+j

From (3.12) relation (3.9) follows immediately. This completes the proof of
the lemma.

Proposition 3.2 Consider equation (1.4). Then the following statements
are irue:

(ii) 1f
O<a<?2 (3.13)

then every positive solution of (1.4) tends to zero as n — oo.

11



(i) If
a>?2 (3.14)

then every positive solution of (1.4) tends to a periodic solution of
(1.4) of period 2k + 2.

Proof. Let z, be an arbitrary positive sclution of (1.4).
(i) Suppose that (2.15) is satisfied. Relation (1.4) implies that for j =
0,1,..,2k+1

Lokt )nti < OT2(k+1)(a—1)45 < - < a"Zj. (3.15)
Therefore, from (2.15) and (3.1Z; we get
lim x?(k—}—l)n—)—j = 'D, _j‘ = O, 1., o 2k +1 (316)
n—eg -

which imply that z,, tends to zero as n — co.
Suppose that
1€ a.< 2, (3.17)

From {3.7) and (3.17) we can easily prove that

I <1, 1<pa (3.18)
We set for j =0,1,...,2k + 1
n—1
. i =
BY) =1n Hw ] (3.19)
iso 201 (s+1)+5

Then from (2.20) we have for j = 0,1,...,2k 4+ 1

=1
B = nz:m (1 4 ba(kt1)(s+1) -2 ~ iz(k+1)(s+1)+j) -

i La(k+1)(s4+1)+j
n—1 i (320)
3 ba(kr1)(s+0)45-2 ~ bkt 1) (s+ 1)+
= Lo(k+1) (s+1)+j
Moreover, from (3.6) and (3.20) we can prove that
5 P1\ 206+ 1) (s+1) 4 5
c —1(—) + ~1
bolkt1)(s+1)+i=2 ~ L2(k+1)(s+1) 45 1Py ) c2(p2 )

Lokt 1) (s+1) 17 & (Pl
P2

)2(‘“+1)(3+1>+J' — (k1) (sH+1) 45
n

g == 052
(3.21)

+ ¢z +

12



Using (3.18) and (3.21) we have that

tf - L 1)4+7-2 — i-" L) (54+1)Lq .
lim ( el s i M Lol 'j) =p,* - 1<0. (3.22)
5—+co Eo(k+1) (s+1) +3

Therefore, from (3.20) and (3.22) we can prove that

lim BY) = —c0, §=0,1,..,.2k+1 (3.23)

n—0oo

which from (3.19) imply that for 7 =0,1,...,2k + 1

oo
i?(_&: ‘—]_](.9«}—1)4_-_“."72 - 0 (3:‘)4)

i=p t?{i\?fl)(S"r 1}-+5

Hence, from (3.8), (3.9) and (3.24) we have that relations (3.16) are true
and so z,, tends to zero as n — co.

Suppose now that
a=2. (3.25)

So from (3.6) and (3.25) we get

tg(k+1)(s+1)+j--2 =2 t2.’:’;+1){s-l—1)+j -

L2 (kt1) (s4+1) +i
(3.26)

361 (_%)2(k+1)(5+1)+j . %

ca + e (=3)7FHIEHIY L Lok L) (s +1) +5)

Then from (3.26) we can easily prove

oo t . 2 oy — i., ]
% (et 1)(st D4 =2 T (kA4 D4 | (3.27)
&d Eo(k+1)(s+1)+7

Therefore, from (3.20), (3.27) we have that (3.23) is satisfied and so arguing
as above (3.16) hold which implies that z, tends to zero as n — co.
(ii) Finally, suppose that (3.14) is satisGed. Then from (3.7) it is obvious
that
‘%f <1, [pi] <1, p3<1. (3.28)
2

In addition, from (3.6) we have that for j = 0,1, ..., 2k 41

La(k+1)(s+1)+5—2 — Logka 1) (st 1) +f =
(3.29)

! S ‘py\ 20k 1) (s 1)+ B
pg{k+1)(s+1)+y (61(101 o (i_;) (et l}).

13



In addition, from (2.24) we get for 7 =0,1,...,2k + 1

T |
In | ez )|
bo(k+1) (s+1) 4
It t | { : . }
i - s4+1)—-244 — L2(k | mMmax 3 5
okt 1) (s+1) 245 — Lo(kt1)(s41)47 Lafk+1)(s+1)—2+] Loa(k+1)(s4+1)+j
(3.30)

Using (3.6), (3.28), (3.29) and (3.30) there exists a positive number N such
that for j =0,1,...,2k +1

e Lok 1) (s+1)+5—2
Lak+1)(s+1)+j

Therefore, from (3.19) and (3.31) we have that there exist

< Npg(k+1)(s+1)+j_ (3.31)

lim BY) = pj < oo, j=0,1,...,2k+ L. (3.32)
o0

11—+

Hence, relations (3.8), (3.9), (3.19) and (3.32) imply that
nlglgo:r;g(kﬂ)m_j =g;j<oo, j=0,1,..,2k+1

and so the proof of the proposition is completed.

4 Study of equation (1.5)

In the first proposition we study the existence of positive periodic solutions
of (1.5) of period m(k + 1).

Proposition 4.1 Consider equation (1.5) where (3.25) holds. Let z, be
posttive solution of (1.5) such that

To = Tm(k+1)- (4.1)
Then xn is a periodic solution of (1.5) with period m(k + 1).

Proof Let @, be a positive solution of (1.5) such that (4.1) holds. Then
from (1.5), (3.25) we get

y 22T _mkr1)+1  2T0T_mk+1)41 w
== - o= - = Tom(k+1)+1
L0 + Tk 2z

14



and working inductively we can prove that
L = Tp_m(k+1), = 1,2, ...

This completes the proof of the proposition.
In the last proposition of this paper we study the asympiotic behavior
of the positive solutions of (1.5). We need the following lemma.

Lemma 4.1 Consider equation (1.5). Let x,, be a positive solution of {1.5).
Thenifa#1, for=0,1,...,nik+1)—1 andn =0,1,... it holds

o T 1 g
Trm(k+1)+5 = {a-1) T’JI‘I 1 S (4'2)
s=1(.‘((?, ai 1)(5).‘;1&1( c+1)+7 iy
where
= :Efm,(k-}—i) 1
= Pl
I a—1

and ifa=1, forj=0,1,...,mlk+1) -1 andn=20,1,... it holds

= 1 _ Tem(k+1)

- == i = 4.3
Fom(k+1) 4 IJ—Sl;Ild +sm(k+1)+3’ z0 (4:3)
Proof. We set
roo e se _ Tn—m(k+1) (4.4)
Yn T - L
Then from (1.5) and (4.4) we get
1 1

Yn+1 = Eyn = 'C"L"; n=10,1,... (45)

So from (4.4) and (4.5) relations (4.2) and (4.3) follow immediately. This
completes the proof of the lemma.

Proposition 4.2 Consider equation (1.5). Then the following statements
are true:

(1) If 0 < a < 2 then every positive solution of (1.5) tends to zero as
n — 0O.

(¥) If a = 2 then every positive solution of (1.5) tends to a periodic
solution of (1.5) of period m(k + 1) as n — co.

(1ii) If a > 2 then every positive solution of (1.5) tends to oo asn — oo.

15



Proof. Let 2, be an arbitrary solution of (1.5).

(i) Suppose that (2.15) holds. Then using (1.5) and arguing as in Propo-

sition 2.2 we can prove that z, tends to zero as n — co.
Suppose that
l<a<2

Let for  =0,1,...,m(k+1) -
3 1

L S D U ’
s=lc(a — 1)(=)mk+D+i 4
a

Dy =

We have for j = 0,1,...,m{k+1) — 1
D(J)) = Zln(c(a . ]_} )S?n(k+1 +4 T 1)

In addition, from (2.20) we take

~a

In(1 + <A
|In(1 + a)| < max{a, =

Using (4.8) and (4.9) and since
1<a

we can prove that

lim (In(DY)) = Lj<eo, j=0,1,..,mk+1)-1

n—oo

which implies that

lim DY) = Mj < oo, j=0,1,..,m(k+1)— 1.

n—0o0

Therefore, from (4.2), (4.6), (4.7) and (4.12) we have that
nlggomﬂ_m{k+1)+j =0, 7=0,1,..,mk+1)—1
and so x, tends to zero as n. — co.

Let now a =1. We set for j =0,1,...,m(k+1) —

T

; 1
KU — _
" s];[ld-l—sm(k—l-l)-l-j

16
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(4.9)
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(4.11)

(4.12)

(4.13)
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Then from (4.14) for 7 = 0,1, ...,m(k + 1) — 1 we take

In(K)) = —Z in(d +sm(k+1)+ j). (4.15)

5=1
So from (4.15) we can prove that

lim (In(KU)) = --0, j=0, 1,...,m(k+1) -1

n—oo L

which implies that

lim K =0, j=0,1,...,m{k+1)—1. (4.16)
n—00

Then relations (4.3), (4.14), (4.16) imply that (4.13) are true and so z,
tends to zero as n — oo.

(i) Suppose now that a = 2. Then from (4.10) relations (4.12) are true.
So from (4.2) we have

im @, ka1)45 = Mjz; < o0, j=0,1,..,mk+1)—-1

n—oo

and so z, tends to a periodic solution of (1.5) of period m(k-+1) as n — co.

(iii) Finally, suppose that a > 2. Then using (4.10), we have that rela-
tions (4.12) hold and so from (4.2) it is clear that @, tends to co &5 7 — co.
This completes the proof of the proposition.
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A COUNTEREXAMPLE TO THE NON-SEPARABLE VERSION
OF ROSENTHAL’S 4-THEOREM

COSTAS POULICS

The tollowing theorem is due to H. P. Rosenthal [6] and it provides a fundamental
criterion for the embedding of £, in Banach spaces.

Theorem 1 (Rosenthal’s £;-theorem). Let (:,) be a bounded sequence in the Ba-
nach space X and suppose that (z,) has no weokly Cauchy subsequence. Then (x,,)
must contain a subsequence which is equivalent to the usual £1-basis.

First of all, we recall that the sequence (z,,) is called weakly Cauchy if for each
continuous functional f € X~ the scalar sequence (fz,) is Cauchy. We also say
that the sequence (x,) is equivalent to the usnal ¢-basis if there are constants
A, B > 0 such that for any n € N and any scalars a1, as,. .., an,

iz i I
AZ la;] < | Zaiwill < BZ lag].
i=1 i=1 i=1

The above condition guarantees that the linear map 7" : ¢, — span{z,, | n € N},
defined by T'e, = z,, for any n € N, is an isomorphism and therefore the space #;
embeds in X.

A satisfactory extension of Theorem 1 to spaces of the type #1(k), for s an
uncountable cardinal, would be desirable, since it would provide a useful criterion
for the embedding of Z;(x) in Banach spaces. Consequently, R. Haydon [4] posed
the following problem: Let x be an uncountable cardinal. Suppose that X is a
Banach space and A is a bounded subset of X with card(A) = &, such that A
does not contain any weakly Cauchy sequence. Can we deduce that A has a subset
equivalent to the usual basis of #;(#)?

Before posing the question:, Haydon [3] exhibited a counterexample for the case
where the cardinal x is equal to w;. A completely different counterexample, for
the case of wy, was also obtained by J. Hagler [2]. Finally, a complete sclution to
this problem was given by C. Gryllakis [1] who proved that the answer is always
negative with only one exception, namely when s and cf(x) are both strong limit
cardinals. However, Gryllakis’ proof is quite difficult and, unlike the case of wy,
does not construct any specific counterexample.

In what follows, our aim is to present a counterexample to the non-separable
version of Rosenthal’s £;-theorem and to give a complete answer to Haydon’s prob-
lem. More precisely, for any uncountable cardinal x, we construct a non-separable
analogue of the Hagler Tree space (see [2]). In the case where either x or cf(x)
is not a strong limit cardinal, using the aforementioned construction, we obtain a
Banach space X and a bounded subset A of X with card(A) = x such that (1) A
contains no weakly Cauchy sequence and (2) no subset of A is equivalent to the
usual #;(x)-basis. In the case where & and cf(x) are both strong limit cardinals,
the answer to Haydon’s problem is positive (see [1]).

1



2 COSTAS POULIOS

In the following we fix an ‘nfinite cardinal x and we set
{0,1}% = {a H{e <k} = {0,1}}
= {(a£)£<m | ag =0or l}

D = {0,1}* = [ J{{0,1)" | Ord(n),n <

= {(ag),g(,] {7 is an ordinal number, 1 < &, az = 0 or 1 ]f
A ’

The set D is called the standard tree and its elements are called nodes. The elemens

of the set {0, 1}* are called branches.

If 5 is a node and s € {0,1}"” we say that s is on the 7-th level of D and we
“denote the level of s by lev(s). The initial segment partial ordering, denoted by <,
is defined as follows: if s = (a¢)ecr, and s' = (be)ecy, belong to D then s < s if
and only if 7, <13 and ag = be for any £ < .

A linearly ordered subset Z of [ is called a segment il for every s < ¢ < ', ¢
belongs to 7 provided that s, s’ belong to Z. Consider now a non-empty segment 7
and let »; be the least ordinal number such that there is a node s with lev(s) =
and s € Z. Moreover, suppose that there are an ordinal number 5 and a node s’ on
the 9-th level such that s < s’ for any s € Z. Let )2 be the least ordinal satisfying
this property. Then we say that 7 is an 7 -ije segrnent.

A finite fanily {Z;}7_, of segments is called admissible if the following properties
are satisfied

(1) there exist ordinals 1), < 9, such that each Z; is an 1,-7» segment,
(2) Z, N I; = 0 provided that : # ;.
- We next consider the vector space coq(D) of finitely supported functions z : D —
R. For a segment T of D, we set Z*(z) = > ., x(s). Then, for any & € cyo(D) we
define the norm

L 1/2
el = sup [ 3 173 ()]
Jj=1
where the supremum is taken over all admissible families {Z;}]_, of segments. We
set X, the completion of ¢po(P) under this norm.
Now let B = (a¢)c<x be any branch. Then 3 can be naturally identified with a
maximal segment of D, namely

BZ{SQ<51<...<Sn<---}

where sp = 0 and s, = (ag)ecy. For any function = € ¢po(D) we have already
defined B*(z) = 3 g a(s). Clearly, B* : coo(DP) — R is a linear functional of
norm 1. This functional can be extended to a bounded functional on X, which is
denoted again by B*. Let I' be the set which conlains the functionals B* defined
above. Clearly, I' is a bounded subset of X} with card(I") = 2%

Concerning the space X; and the family of functionals I, we prove ithe following
theorems.

Theorem 2. Any sequence (B} )pen in I has a subsequence equivalent to the usual
£y-basis. Therefore, T' contains no weakly Cauchy sequence.

Theorem 3. No subset of I' is equivalent to the usual basis of £1(x7).
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Now let « be a cardinal number, which is not strong limit. This means that
there exists cardinal A < & such that x < 2*. Consider the space X, and the
corresponding family I' € X3. Then we have card(l')) = 2* and hence we can
choose a subset A of T with card(4) = x. By Theorem 2, the set A contains no
weakly Cauchy sequence. Murthermore, by Theorem 3, no subset of A is equivalent
to the usual £;(x)-basis.

Moreover, in the case where k is strong limit and cf(k) is not a strong limit
cardinal, using our construction, we obtain a Banach space X and a subset A of X
with the desired properties.

Finally, the main properties of the spaces Hagler Tree [2] and James Tree [5], by
which our construction is inspired, suggest the following conjecture for the spaces

K
Conjecture. The space X, does not contain a subspace isomorphic to €1 (k).

Concerning the above conjecture, a partial resuit can be proved rather easily.
For any node s € D, let e, € X,. be defined by e (t) = 1if t = 5 and e,(t) =0
otherwise. Now consider any branch B and the subspace 5pan{e; | s € B}. Then
this subspace contains no isomorphic copy of £; (i).
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Abstract

This paper studies the behavior of positive solutions of the differ-
ence equation
P
‘T’nél
Tpiy = A+ e n=101,..,

n

where A,p,q € (0,00) and x_1, g € (0, c0).

Keywords: Difference equation, boundedness, persistence, attractivity,
asymptotic stability, periodicity.

1 Introduction

Difference equations have been applied in several mathematical models in
biology, economics, genetics, popalation dynamics etc. For this reason, there
exists an increasing interest in studying difference equations (see [1}-[28] and
the references cited therein}.

The investigation of positive solutions of the following equation

$’P
n—

Tpa=A+—2=k n=01,..,

.q
n—

3]

3

where 4,p,q € [0,c0) and k,m € N, k # m, was proposed by Stevié at
numerous conferences. For some results in the area see, for example, [3], [4],
(5], [8], [11], [12], [19], [22], {24}, [25], [28].



In [22] the author studied the boundedness, the global attractivity, the
oscillatory behavior and the perindicity of the positive solutions of the equa-
tion 5

Ty,
Tnt1 =0+ —5, n=0,1,...,
Ln

where a, p are positive constants and the initial conditions z_;, zg are pos-
itive nuinbers (see also [5] for more results on this equation).

In [11] the authors obtained boundedness, persistence, global attractivity
and periodicity results for the positive solutions of the difference equation

Tpyl =0+ :Cn—;l", n==071,... ,
Tn
where a, p are positive constants and the initial conditions z_1,xq are pos-
itive numbers.
Motivating by the above papers, we study now the boundedness, the
persistence, the existence of unbounded solutions, the attractivity, the sta-
bility of the positive solutions and the period two solutions of the <lifference

equation
p

o i
Topp1 = A+ 2275 n=0,1,..., (1.1)

:rTl
where A, p, g are positive constants and the initial values ©_;, zg are positive
real numbers.
Finally equations, closely related to Eq. (1.1), are considered in [1]-[11],
(14], [16]-[23], [26], [27], and the references cited therein.

2 Boundedness and persistence

The following result is essentialiy proved in [22]. Hence, we omit its proof.

Proposition 2.1 If
D<p=l, (2.1)

then every positive solution of Fq.(1.1) is bounded and persists.

In the next proposition we obtain sufficient conditions for the existence
of unbounded solutions of Eq.(1.1).

Proposition 2.2 If
p 2 1 (2.2)

then there exist unbounded solutions of Eq.(1.1).



Proof Let x,, be a solution of (1.1) with initial values z_;,zy such that
31 > max {(A+1)7, (A+1)7 T}, 30 < A+1. (2.3)

Then from (1.1), (2.2), (2.3) we have,

P "
t1=A4+—F>A+ - —z_1+T 1
: «l . (A+1) 2.4)
” ie. - e »
nA"l-&’,_l((A_'_l)q 1)+I_1>A+J,_1.
72fA+mG<A+(—+)—<A+1. (2.5)
i 2?4
Moreover from (1.1), (2.3) we have
4 (A—Fl)r’ i . 2
=A > A4 — =A+(A+1)r T > (A+1)71. (2.6
+0 + I = A (A )P > (A4 )P (26)

Then using (1.1), (2.3)-(2.6) and arguing as above we get

T S o
T3 = +$—g> +m—$1+$1> + L1
5 A+1
a;4=A+E§~<A+L~i<A+1
T3 "I"—l

Therefore working inductively we can prove that forn =10,1, ...
Ton+1 > AJF Ton—1, Tap < A wd

which implies that
lita: oo 00 =00.
n—oo

So z, is unbounded. This completes the proof of the proposition.

3 Attractivity and Stability

In the following proposition we prove the existence of a positive equilibrium.



Proposition 3.1 [f either
O<gcp<l (3.1)

or
O<p<yg (B2

hold then Eq.(1.1) has o unique positive equilibrium T.

Proof. A point 2 € IR will be an equilibrium of Bq.(1.1) if and only if
satisfies the following equation

Fle) =zP 1—x+A=10.
Suppose that (3.1) is satisfied. Since (3.1) holds and

Fll) =(p-ga? 91 -1 (3.3)

we have that [ is increasing in [0, (p — q)ﬁ] and F is decreasing in
1
[(p — q)=7%7T, 00). Moreover F(0) = A > 0 and
ﬁll] F(l) R (34)

T—00

So if (3.1) holds we get that BEqg.(1.1) has a unique cquilibritun Z in (0, co).

Suppose now that (3.2) holds. We observe that F'(1) = A > 0 and since
from (3.2), (3.3) F'(z) < 0, we have that F is decreasing in (0,00). Thus
from (3.4) we obtain that Eq.(1.1) has a unique equilibrium Z in (0, o).
The proof is complete.

In the sequel, we study the global asymptotic stability of the positive
solutions of Eq.(1.1).

Proposition 3.2 Consider Eq.(1.1). Suppose that either
1
O<p<l<yg A>((p+g—1)r>H (3.5)

or (8.1) and
Oipk = 1, (3.6)

hold. Then the unique positive equilibrium of Eq.(1.1) is globally asymptot-
ically stable.



Proof. First we prove that every positive solution of Eq.(1.1) tends to the
unicue positive equilibrium = of Eq.(1.1).

Assume first that (3.5) are satisfied. Let z, be a positive solution of
Eq.(1.1). From (3.5) and Proposition 2.1 we have

0<l=lminfz,, L=lmsupz, < co. (3.7)
n—Heo n-—+co

Then from (1.1) and (3.7) we get,

Lr [r
and so
LT < AP+ LP, 1L?> ALY 4+ [P
Thus,

ALY L piet < Ap9791 4 LPLAY
This implies that
ALITNTHL - 1) < LPH9ml et (3.8)

Suppose for a while that p+ ¢ — 2 > 0. We shall prove that [ = L. Suppose
on the contrary that I < L. If we consider the function zPT?~! then there
exists a ¢ € (I, L) such that

Lpre=1 _ ptq-1
L—1
Then from (3.8) and (3.9) we ¢htain

=(p+q-— 1)Cp+q—2 <(p+qg—1)LPHa2, (3.9)

AL < (p4 g — 1) LPta2

or
ALY Pl < ppg—1. (3.10)

Moreover, since from (1.1),
L>A, [>A
from (3.5) and (3.10) we get
AAY P91 — qa—pHl <ptg-1

which contradicts to (3.5). So { = L which implies that z, tends to the
unique positive equilibrium z.



Suppose that p+ g — 2 < 0. Then from (3.8) and arguing as above we
get
ALY L o g NPT,
Then arguing as above we can prove that z,, tends to the unique positive
equilibriiin 7.
Assume now that (3.6) holds. From (3.6) and (3.8) we obtain

T 1,
PV T L SN S p_q__ L7
I l-p—q {1-p—1q [1-p—qjl—p—q

which implies that L = . So every positive solution =, of Eq.(1.1) tends to
the unique positive equilibrinm % of Eq.(1.1).

It remains to prove now that the unique positive equilibrium of Eq.(1.1)
is locally asymptotically stable. The linearized equation about the positive
equilibrinm 2 is the following

Yntz + qEP T s — pP Ty, = 0. (3.11)

Using Theorem 1.3.4. of [13] the linear equation (3.11) is asymptotically
stable if and only if

gFF Tl <« —pEP 41 <2 (3.12)
First assume that (3.5) hold. Since (3.5) hold then we obtain that
A>(p g5 (g +p—1). (3.13)
From (3.5) and (3.13) we can easily prove that
F(e) > 0, where c= (p+ q}T%T? (3.14)

Therefore »
> (p+ q) T (3.15)

which implies that (3.12) is true. So in this case the unique positive equi-
librium Z of Eq.(1.1) is locally asymptotically stable.

Finally suppose that (3.1) and (3.6) are satisfied. Then we can prove
that (3.14) is satisfied and so the unique positive equilibrium % of Eq.(1.1)
satisfies (3.15). Therefore (3.12) are hold. This implies that the unique
positive equilibrium Z of Eq.(1.1) is locally asymptotically stable. This
completes the proof of the proposition.



4 Study of 2-periodic solutions

Motivated by Lemma 1 of [5], in this section we show that there is a prime
two periodic solution. Moreover we find solutions of (1.1) which converge to
a prime two periodic solution.

Proposition 4.1 Consider Fq.(1.1) where
D<p<l<ayg (4.1)

Assume that there exists o sufficient small positive real number e1, such that

1
W > € (42)
and ) b
(A+£1)fel_a <A+el_p/q(A+el) v (4.3)

Then Eq.(1.1) has a periodic solution of prime period two.

Proof. Let z, be a positive solution of Eq.(1.1). It is obvious that if

P P

€T x

—1 e 4]
1‘71:14.4-“7, 10—A+—a—“,
23 il

then z, is periodic of period two. Consider the system

zP yP
Then system (4.4) is equivalent to
D B
1 z9
y-A-L =0 y= T (4.5)
- (z—A)7
and so we get the equation
4 222—L2
g SR R P B I | (4.6)
(w - A)i (z— A)F
We obtain
1 2 2 1—
Glx) = p(at -2 (x—-A4)7 ) -4
(z - A)a



and so from (4.1)
Lt Glu) = co.
z— AT
Moreover from (4.3) we can show that
G(A+e) <0 (4.7)

Therefore the equation G(z) = 0 has a solution Z = A + ¢, where 0 < ¢y <
€1, in the interval (A, A + ¢;). We have

_E
xTa

Tt
We consider the function
Hle)=(A4+e) % —c
Since form (4.1) H'(e) = (p — ¢)(A +€)P7971 — 1 < 0 we have
H(eo) > H(er). (4.8)

From (4.2) we have H(e;) > 0, so from (4.8)

Heo) = (A+ €)% —¢ >0
which 1mplies that ,

E=A45< (—A—*—%‘OE = .

q
o
Hence, if z_y = &, zp = ¥, then the solution z, with initial values z_q, zy
is a prime 2-periodic solution.

In the sequel, we shall need the following lemmas.

Lemma 4.1 Let {z,} be a solution of (1.1). Then the sequences {x3,} and
{Z2n41} are eventually monotone.

Proof. We define the sequence {u,} and the function h(z) as follows
Un =2 — A, h{z)=z+ A
Then from (1.1) for n > 3 we get

Un _ (un—2 + A) (un-3 + A)9 _ (Alun—2))" (h(ua—3))7

Un-2  (Un—g+ AP (tn-y +A)7  (Alun—1))? (h{un_1))*

Then using (4.9) and arguing as in Lemma 2 of [5] (see also Theorem 2 in
[20]) we can easily prove the lemma.

(4.9)



Lemma 4.2 Consider equation (1.1) where (4.1) and (4.3) hold. Let z,, be
a solution of (1.1) such that either

A< <A+te, o> (A 4-61)56;E {4.10)
or )
2 R
A<zg< A+e, 21> (Ate)ig . (d4.11)
Then if (4.10) hold we have
g el
A<Ton 1 <A+te, zom> (fl + El)gél oomesl), 1. (412)
and if (4.11) are satisfied we have
1
A<zgy <Ate, Tama>A+e)ie?, n=0,1,.. (4.13)

Proof Suppose that (4.10) are satisfied. Then from (1.1) and (4.3) we have

2l (A+e)?
A< =A+ L <At =4
T :Lg ey (At ep)r +é1

and
2 2 P 1

Zh p2-g? ]
xZ:A+.—2>A+{.4+51) T € ! >(A+£1)£61“.

T
Working inductively we can easily prove relations (4.12). Similarly if (4.11)
are satisfied we can prove that (4.13) Lold.

Proposition 4.2 Consider equation (1.1) where (4.1), ({.2) and (4.3) hold.
Suppose also that
A+e <1 (4.14)

Then every solution m, of (1.1) with initial vaelues z_y,zy which satisfy
either (4.10) or ({.11), converges to a prime two periodic solution.

Proof Let z, be a solution with initial values z:_1, 7o which satisfy either
(4.10) or (4.11). Using Proposition 2.1 and Lemma 4.1 we have that there
exist

lim zope1 =L, lim zo, = 1.

n—o0 N—+0C0

In addition from Lemma 4.2 we have that either L or [ belongs 1o the in-
terval (A4, A+¢;). Farthermore from Proposition 3.1 we have that equation
(1.1) has a unique equilibrium 7 such that 1 < Z < co. Therefore from



(4.14) we have that L # [. So z, converges to a prime two period solution.
This completes the proof of the proposition.
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1 Introduction

Let § CRY (N >1) be a bounded domain with a C?-boundary 80Q.
We consider the following nonlinear Neumann vroblem:

[ —Bpulz) + B(2) ()P ?ulz) = Au(2)]**u(z) + f(z,u(z))

a.e. in ), u >0, (1)
<

du

e W 0

an et Gl

Fe Ll \{0}, A>0, l<g<p<co.

Here Apu = div (||Du|[P~2Duw).
Note that the term = — Az|? 22 is (p — 1)-sublinear near +co, i.e.




(“concave” term).
The Carathéodory function f(z,z), z € 2, = € R is supposed to be (p — 1)-superlinear near +oco in
x, 1.6
f \
: T
lim ‘—fL’—} = +00
z—+4oo Pl
( “convex” perturbation).
The aim of this work is to establish a bifurcation - type result for the positive smooth solutions of (1},
with respect to the parameter A > 0.

Particular case: The right hand side term of (1) has the form z — Az|Y =%z + jz|" 72z, with

Np

— ifp< N
N—-p e

l<g<p<s<r<p*=
+o0, ifp>N

his particular case is what we mostly encounter in the literature and only in the context of Dirichlet
problems.

In this direction we mention the semilinear (i.e., p = 2) work of Ambrosetti-Brezis-Cerami [1], which
is the first to consider problems with concave and convex terms.

The above work was extended to nonlinear problems driven by the p-Laplacian, by Garcia Azorero-
Manfredi-Peral Alonso [3] and by Guo-Zhang [4], for p > 2. In the latter case, the authors also consider
reactions of the form

Mz|" 2z + g(a),

where g € CY(R), ¢'(z) >0, zg(z) >0, for z € R and

Hm ————— =
jz|—0 |z|P~2x

9@ _, o 9@

> A
’ lz|—ec0 |I'P'—?‘.'L' :

For Dirichlet problems driven by the p-Laplacian and with reactions of more general form we also
refer to the following works:

» Boccardo-Escobedo-Peral [2]. The reaction 1s

Ag(z) +27"1, z>0,
where
g9:Ry = R continuous, g(z) <éz9 'forz > 0withé>0, 1<g<p<r<p*
and the function = — Ag(z) + 2"~ ! is nondecreasing on R .

They prove the existence of only one positive solution for A > 0 suitably small.

= Hu-Papageorgiou[5], where the “convex” ({p— 1)-superlinear) term is a more general Caratheodory
function f(z,z) satisfying the well-known Ambrosetti-Rabinowitz (AR) condition:

“Apu>p, M >0 such that Vo > M,

0 < pulF(z,z) < f(z,z)z uniformly for a.a. z € 0.7



To the best of our knowledge, no bifurcation-type results exist for the Neumann problem.

We mention only the work of Wu-Chenl[6], whe= the reaction is of the form Af(z,2), A > 0,
f{-,) {(p — 1)-sublinear near infinity in = € R.

The authors also impose the extra restrictive conditions that essigfﬁ > 0 and that NV < p.

They produce three solutions for all A > 0 in an open interval. The obtained solutions are not positive.

2 The hypotheses on the perturbation.

(H) : The Carathéodory function f(z,2), z € , = € R has {r — 1) -polynomial growth with respect to z
(p < 7 < px). Moreover,
f(z )

i) lim -
() x—0+ .'L'p—l

=0 uniformly for a.a. z € {1

(ii) there exists dg > 0 such that

flz,z) >0 foraa zef}, allzel0, &)

and
V0 >0, 3& >0 such that for a.a. z € ,

T = f(z,2) + &Pt s increasing on [0, ¢].

(i) if F(z,2) = /Drv f(z,s)ds, then
Filzx)

lim = +o0 uniformly for a.a. z € 0
] P
and
L z,r)x —pF(z,z r
1o < liminf fanle phizme uniformly for a.a. z € Q,
T—+400 T
where

N *
TE([T—p)Hl;}x{L;},p), g<T, 1 >0

Remark 1: Since we are interested in positive solutions and hypotheses H (i), (ii), (iii) involve only
the positive semiaxis we may assume that f(z,z) =0 for a.a. z € Z, all z < 0.

Remark 2: In order to express the “ (p — 1) -superlinearity” of f(z,z) with respect to = near +co,
instead of the usual in such cases AR-condition, we employ the much weaker conditions H(iii).

Example:

0 if <0

3

flz) =

_.L-P
TP+ 1

:cp_l(ln(rcp+1)+ ), il z>0.

Note that f satisfies H(iii) but it does not satisfy the AR-condition.



3 Some function spaces

In the study of our problem we will use the following two [unction spaces

Cp() = {u e CH{@): g: ~ 0 on 00}
and
wie() = i
where || - |} denotes the Sobolev norm of WHP{{).

Note that C1(Q) is an ordered Banach space with positive cone
Cy ={ueCL() :u(z) >0 forall z € {I}.
This cone has a nonempty interior given by

intCy = {u € Cy s u(z) >0 for all z € 0},

4  The Euler functional

Let ¢y : W2P(§2) =+ R be the Euler functional for problem (1) defined by

1 1 A
,.u:—lDu"”—i——f’u*"dszu'*?—/Fz,udz,
wa(u) pi, 1 IJQdll qH 1% i (z,u)

where F(z,2) = / flz, s)ds.
/o

Proposition 1 Under hypotheses (H), @, € C* (W’,{*P(ﬂ)) and each nontrivial criticel point of ) is a
positive smooth solution of {1).

The proof is mainly based on the nonlinear regularity theory and also on the nonlinear maximum
principle of Vazquez combined with hypothesis H(ii):
“¥Y9 >0, 3& >0 such that for a.a. z € 0,

z = f(z,z) + &aP' s increasing on 0,4).”
&

Proposition 2 Under hypotheses (H), @x satisfies the Cerami condition (C -condition):
“ Bvery sequence {&n}n>1 € X = WLP(Q) such that

sup Jpa(za)| < 00, (14 [lzall)eh(za) = 0 in X* a5 n = oo,
n

2

has w slrongly convergent subsequence

The proof crucially uses hypothesis H(iii).



5 The bifurcation -type result

~A,u(2) + AR (2)P2u(z) = Alu()]"2ulz) + (z,u(z))

a.e. in {2, (1)

A
l ,{‘,Ji =0on 0N (1<g<p<oo)
T

Theorem 3 If hypotheses (H) hold and 8 € L)\ {0}, then there exists A* > 0 such that
(a) for X € (0, A*) problem (1) hes at least two positive smooth solutions

(b} for A =X* problem (1) has at least one positive smooth solution

{c) for A > A* problem (1) has no positive solution

The proof of Theorem 1 may be divided into two parts:
Part I: We consider the set

S ={A>0: problem (1) has a positive smooth A -solution}

and we prove that S is nonempty and bounded from above.
Part 1I: We prove that A* = sup S has the desired properties.

Sketch of the proof of Part I:

Proposition 4 Under the hypotheses of Th. 3, there exists A > 0 such that for every X € (Q, 5\) we
can find py > 0 for which we have

inf[@a(u) : |Juli=pa]=mnx>0.
In order to prove Prop. 4, one shall need hypothesis H(i):

“ lim flz,3)

z—0+ zP—!

=0 uniformly for a.a. z € ("

in conjunction with the (r—1) -polynomial growth of f{z, z) with respect to z and also with the inequalities
1 g Cpsin .

Proposition 5 Under the hypotheses of Th. 3, we have
ea(tu) = —co  as £ — +oo,
for each uw € Cp \ {0} with ||u]|, = 1.
The proof of Prop. 5 is based on the p-superlinearity of F(z,z) with respect to = near +oo {(H(iii))

and also on the fact that ¢ < p.
Now Prop. 1, 2, 4, 5 via Mountain Pass Theorem yield

ot



Proposition 6 Under the hypotheses of Th. 3, we have (U,;\) C 5, where A is as postulated in Prop. 4.
Hence, S # ©.

Proposition 7 Under the hypotheses of Th. 3, the set S is bounded from above.
For the proof, we shall need the following
Lemma 8 Let 8 € L) \ {0} ,u,% € int C.. and B > 0 such that for a.a. z € (),
—Bpuz) + Bl + R < —AE() + BRI (2)
Then u < 4 on (0.

The proof of the above lemmma is mainly based on the monotonicity properties of the operator 7' :
X = X* (X = W.P(Q)) induced by the differential operator u — —A ju + f(-)|u|Pu.

Proof of Prop. 7: The (p — 1) -superlinearity of f(z,z) with respect to z near +oco combined with
hypothesis H(ii) enables us to choose A > 0 large such that

Azt 4 flz,x2) > 1Blleez®™! foraa.ze, allz > 0.

Claim: A is an upper bound of S.
Indeed, suppose that for some A > A our problem has a A -solution u € int 'y, Let m = mingu > 0.
Then for a.a. z € 1,

—Agu(z) + B2)u(z)P! 2 ||Blleou(2)P ™ + (A = Au(z)~
> —Aym 4 B(Z)mP 4+ (A= A)mi!

which implies (see Lemma 8) that v > m on O (false!). O

Sketch of the proof of Part II:
We begin with two Lemmas:

Lemma 9 Letu,u € int C; and 0 < A < X such that u is o A -solution and T is o A-solution. If u<nu,
then u < 4 on {1

For the proof, we set 8 = ||Z]|cc and we choose & > 0 such that = — f(z,z) + £zP~ is increasing

on [0,6] (hypothesis H(ii)).
Then (2) holds for

“BLY =B8() + &, “R=A—-Am’", m=mini
and now Lemma 8 applies.
Lemma 10 Let 0 < A < A and % € int Cy bea X -solution. Then there exists a A-solution

ug € int Cp such that .
O<up<u on 2, @alug) <O.



Proof: We consider the following truncation of the reaction:
0, if z <0
olz,z) = Ac?~ + f(z, 1), if 0<z<alz)
A{z)T + flz,0(2)), i G(2) <z

We set Gy(z,z) = foz gx(z,s)ds and consider the C'l-functional 4 : WiP(Q) — R defined by
Wy(u) = iHDU,HT’ + E/ AlulPdz — / Gz, u)dz.
’ P Popla o ’

By using suitable test functions we may show that each critical point of 44y lies in the interval [0, 1)
and it is also a critical point of the Euler functional ;.
Note that 1, is coercive and weakly lower semicontinuous, so we can find ug € W:#(Q2) such that

¥y (ug) = inf ¥a(u) 1w € WHP(Q) ]

Then ¥\ {up) =0 = up € [0,%] and @) (ug) =0.
Moreover, we may show that for sufficiently small
t >0, we have ¢, (t) <0, so

Walug) <0 =1(0) = up #0.

It follows that wg is a positive smooth A-solution with py(uo) = 1 (up) < 0.
Finally, since A < A, we have up < U {see Lemuma 5).

Thus, ug € (0,7). O

To proceed, set A* = sup §.

Proposition 11 If hypotheses of Th. 3 hold and X\ € (0,A*), then problem (1) has least two smooth
positive solutions
ug, G € intCy , up F 4, wue <4, @ilug) <0.
Sketch of the proof:

Let A € (0,A*). Choose X € (A, A*)NS and a A -solution @ € int Cy .
By view of Lemma 10, we may find a A -solution wug € int C. such that

0<ug <u, @xlug) <O0.
Next, consider the following truncation of the reaction:
Mug(2)1™1 + f(z,u0(2), if = Sup(2)

f,\(z,;;:) =
Azt + f(z, ), it wo(z) < .

Let Fy\(z,z) = / Fr(z,s)ds and consider the G -functional Gy WEP(Q) = R defined by
0

1 1 : -
oW = IDul + [ flulrds ~ | A(zude
Yy PJq Q



By using suitable test functions we may show that for each critical point 1w of @y, we have ug < w

and that w is also a critical point of the Euler functional 5.
Evidently, ¢ |jo, @ Is coercive and weakly lower semicontinuous. So, we can find up € [0, %] such

that
(25 [ag) = inff (,5)\ (u) U e {0, ﬁ] ] ¥

Then
—@\ (o) € Njo, z)(To)

where N o, g)(uo) denotes the normal cone to [0, @] at o .
By using the definition of the normal cone of a closed and convex set combined with our hypotheses,

we may show that @ (ig) = 0.
It follows that ug < up and that @y is a nontrivial critical point of the Euler functional ¢y. Hence, @

is also a positive smooth A-solution to our problem.
o If %g # up, we are done.
» Suppose that 7y = ug. Since ug € (0,%), we infer that

up is alocal CL(T)) — minimizer of & .

It follows from a fact due to Barletta -Papageorgiou (which extends previous resuits of Brezis -
Nirenberg and of Azorero-Manfredi-Alonso) that

up is a local W2AP(Q2) — minimizer of 3y .

Without loss of generality, we may assume that up is an isolated critical point and local minimizer of
the functional @, .
Then we prove that:

e for some p > 0,
@a(ue) <iInfl @a(u) o |lu —upll = p |

e for every w € int C with |jull, =1,

Prtu) = —oo, as i — +oo

e (5, satisfies the C -condition

Arguing via Mountain Pass Theorem we may find a critical point 4 of @y such that @ # ug .
It follows that up < 4 and that @ is a nontrivinl critical point of the Euler functional ¢,
Hence, 4 is a second positive smooth A-solution to our problem. |

Proposition 12 If hypotheses of Th. 3 hold, then for A = A*, problem (1) has at least one smooth
positive solution.

The key ingredient in the proof of Proposition 12, is the following



Lemma 13 Let S C S be nonempty and bounded from below with inf S' > 0 and B C int Cy. be [ &
-bounded. Then there exzists w € int C such that for ench X\ € S’ and for each A-solution u € B, we
have w < .

Sketch of the proof of Prop. 12: Cheose a nondecreasing sequence (\,) C § such that A, T A*.
By view of Prop.11, we may find {tintnz1 C int Cy such that

oy, (un) =0, va, (un) <0, foralln>1.
Arguing in a similar way as in the proof of the Cerami condition, we may show (by passing Lo

subsequences) that
Up -+ Uy, strongly in WhP(0).

‘Then nonlinear regularity theory guarantces that

sup Hunnoo < co
Ti

and that u, is a smooth A*-solution.
Now Lemma 13 asserts that for some w € int Cy, we have w < u, , n > 1. Thus, w < ., 80 u, €
int Cy.
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ABSTRACT
Consider the first-order and the second-order delay difference equations
Az(n) +oln)e{r(n)) =0, n=20,1,2,., (1)
and

A%z(n) + p(n)z(T(n)) =0, n=0,1,2,..., (2)

where Az(n) = z(n+1)—z(n), A? = AoA;p: N—=R* 7 :N—= N, 7(n) <n-—-1
and lim,, 0o 7(n) = +00,

The most interesting oscillation criteria for Eq.(1), and Eq. (2),especially in
the case where

n—1 n

1
0 lim inf ) < — d lims ' s
< limin Z p(3) < - and limsup Z p(i) < 1

n—o0

i=T(n) i=7{n)

for Eq.(1), are presented.

1 Introduction

The problem of establishing sufficient conditions for the oscillation of all solutions
of the first-order delay difference equation

Az(n) + p(n)z(t(n)) =0, n=0,1,2,.., (1)

has been the subject of many investigations, especially in the case where the delay
n — 7(n) is a constant, that is, in the special case of the difference equation

Az(n) +pln)zln—-k)=0; n=0,1,2,.. (1y

OKey Words: Oscillation; delay, difference, differential equations.
2010 Mathematics Subject Classification: Primary 34K11; Secondary 34C10.



The oscillation theory of the second-order delay difference equation
A2a(n) + p(n)e(r(n)) = 0, 2)

where Az{n) =z(n+1)—z(n), A>=AcA,p: N>R, 7: N> N,k isa
positive integer, 7(n) < n—1 and lim,_,., 7(n) = +co, has also attracted growing
attention in the recent few vears. See, for example, [1, 2, 4-16, 18, 19, 24, 26, 30,
36, 40, 42, 43, 45-47, 52-55, 58-64, 68, 69, 71-76] and the references cited therein.

Strong interest in Eq.(1}; Eq.(1), and Eq. (2), are motivated by the fact that
they represent discrete analogues of the delay differential equations

2'(t) + p(t)z(7(t)) =0, t2>1, (1)

o/(t) + p(H)a(t —7) =0, 7> 0. (Lo
and

2'(t) + p(FE) =0, t2ty, (2:)

respectively, where the functions p,7 € C([tp,00), R*) (here RT = [0,00)), 7(%)
is nondecreasing, 7(t) < t for t > to and lim o 7(¢) = co. See [3, 17, 20-23,
25, 27-29, 31-35, 37-39, 41, 44, 48-51, 56, 57, 65-67, 70] and the references cited
therein.

By a solution of Eq.(1) we mean a sequence z(n) which is defined for n > min
{7(n) : n > 0} and which satisfies Eq.(1) for all n > 0. A solution z(n) of Eq.(1)
is said to be oscillatory if the terms z(n) of the solution are neither eventually
positive nor eventually negative. Otherwise the solution is called nonescillatory.
{(Analogously for Eq.(1)'and Eq.(2))

In this paper our purpose is to present the state of the art on the oscillation
of all solutions to Eq.(1), Eq. (1) and Eq. (2), especially in the case where

n—1 n
1
0 < liminf ;) < — and I ) < 1
it § P53 wnd Hijsp ) 21
1=T\", =7(n

for Eq.(1), and

n—1 k k41 n
0 < liminf Z p(i)< (m) and limsup Z p(3) <1

. i=n—k i=n—k

for Eq.(1)".



2 Oscillation Criteria for Eq. (1)’

In this section we study the difference equation
Lz(n) Fprlzin—k)=0, n=012,.. (1y

where Az(n) = z(n + 1) — z(n), p(n) is a sequence of nonnegative real numbers
and k is a positive integer.

In 1981, Domshlak [14] was the first who studied this problem in the case
where k = 1. Then, in 1989, Erbe and Zhang [24] established that all sclutions
of Eq.(1)" are oscillatory if

- K
llﬂg}fp(n) > T e (2.1)
or .
limsup Z Pl 1 (Cy)
n—0co Sk

In the same year, 1989, Ladas, Philos and Sficas [43] proved that a sufficient
condition for all solutions of Eq.(1)’ to be oscillatory is that

n—1 k k+1

i=n—k

Therefore they improved the condition (2.1) by replacing the p(n) of (2.1) by the
arithmetic mean of p(n — k), ...,p(n — 1) in (C,)".

Concerning the constant ﬁl— in (2.1) it should be emphasized that, as it
is shown in [24], if

kk
o
then Eq.(1)" has a nonoscillatory solution.

In 1990, Ladas [42] conjectured that Eq.(1)’ has a nonoscillatory solution if

2 < ()"

i=n—k

supp(n) <

holds eventually. However, a counterexample to this conjecture was given in 1994,
by Yu, Zhang and Wang [73].

It is interesting to establish sufficient oscillation conditions for the equation
(1) in the case where neither (Cy)’ nor (Cy) is satisfied.

In 1995, the following oscillation criterion was established by Stavroulakis [54]:



Theorem 2.1 ([54]) Assume that

n—1 k \ k+1
g = lim inf z ( |

i=n—k
and
. ol
limsupp(n) > 1— o (2.2)

then all soluiions of Eq.(1)" oscillate.
In 2004, the same author [55] improved the condition (2.2) as follows:

ket
Theorem 2.2 {[55]) If0 < oy < (:_%) , then either one of the conditions
= ol
limsu i)>1-— Cs)
or
lim sup Z (i) >1—of (2.3)

implies that all solutions of Eq.(1) oscillate.
In 2006, Chatzarakis and Stavroulakis [8], established the following

k+1
Theorem 2.3 ([8]) If 0 < ap < (k—h) and

limsup Z p(i) >1— (2.4)

n—oo

(2 = Ofo)

i=n—k
then all solutions of Eq.(1) oscillate.

Remark 2.1. Observe the following:

(i) When o — 0, then it is clear that the conditions (C3)’, (2.3) and (2.4)
reduce to

n—1
A :=limsup Z > 1,
T ienk
which obviously implies (C)'.
(ii) It always holds
a? o’
ol e
22—a) = 47

sinca « > 0 and therefore condition (C3) always implies (2.4).

4



(i) When k = 1,2
2
2(2 - a) ’
(since, from the above mentioned conditions, it makes sense to investigate the
case when a < (ﬁ)kﬂ) and therefore condition (2.4) implies (2.3).
(iv} When k = 3,

2

o 3 . 2
. LN f ; [l
2(2“a)>a Hdl<ac< 3
while .
8 <alifl “/2<o:< g
—_— ifl—— -1 .
22 - a) 2 T \4

So in this case the conditions (2.4) and (2.3) are independent.

(v) When k > 4
2

= k
=) > o,
and therefore condition (2.3) implies (2.4). ‘
(vi) When k > 10 condition (2.4) may hold but condition (C) may not hold.
(vii) When k is large then o — % and in this case both conditions (C3)" and

(2.3) imply (2.4). For illustartive purposes, we give the values of the lower bound
of A under these conditions when k = 100 (a =~ 0.366) :

(2.3) : 0.999999
(Cs) : 0.966511
(2.4) : 0.959009

We see that the condition (2.4) essentially improves the conditions (Cs)’ and
(2.3}

Also, Chen and Yu [9] obtained the following oscillation condition

CIO—‘\I'l—QO:O—Ofg (04)’

2

n 1.'__
limsu i) >1—
msup 3 | p(i)

i=n—k



3 Oscillation Criteria for Eq. (1)

In this section we study the difference equation
Az(n) + p(n)z(t(n)) =0, n=0,1,2,.., (1)

where Az(n) = z(n + 1) — z(n), p(n) is a sequence of nonnegative real numbers
and 7(n) is a nondecreasing sequence of integers such that 7(n) < n — 1 for all
2 Dand By 7 (n) =00

In the case of Eq.(1) with a general delay argument 7(n), from Chatzarakis,
Koplatadze and Stavroulakis [4], it follows the following

Theorem 3.1 ([4]) If

lim sup Z p(i) > 1 (Ch)

then all solutions of Eq. (1) oscillate.

This result generalizes the oscillation criterion (C;). Also Chatzarakis, Ko-
platadze and Stavroulakis [5] extended the oscillation criterion (Cs) to the general
case of Eq. (1). More precisely, the following theorem has been established in [5].

Theorem 3.2 ([5]) Assume that

n—1
limsup > p(i) < +o0 (3.1)
T ier(n)
and
n-—-1 1
o = lim inf Z p(z) > o (Ca)

i=7(n)
Then all solutions of Eq.(1) oscillate.

Remark 3.1 It is to be pointed out that the conditions (C) and (Cs) are
the discrete analogues of the conditions (C4)" and (C3) for Eq.(1) in the case of
a general delay argument 7(n).

Remark 3.2 ([5]). The condition (Cs) is optimal for Eq.(1) under the as-
sumption that lirf (n—7(n)) = co, since in this case the set of natural numbers

increases infinitely in the interval [7(n),n — 1] for n — co.

Now, we are going to present an example to show that the condition (C5) is
optimal, in the sense that it cannot be replaced by the non-strong inequality.

Example 3.1 ([5]) Consider Eq.(1), where

7(n) = [Bn], p(n) = (07 — (n+ 1)) (1Bn])*, B (0,1), A=-1n""3 (3.2)
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and [8n] denotes the integer part of Sn.
It is obvious that

nl-{—)\ ( —A

n*—(n+1)") = A for n— co.
Therefore \
n(n™ = (n+ 1)) ([Ba))* — I; for n— co. (3.3)

=

Hence, in view of (3.2) and (3.3), we have

n—1
) A a1
Vi TR E in
lfi}gflp(?) = I}g&lf E z —(E+1)” ) (18] ;
i=7(n) ﬁ”}
“11 do, 1 3
— — 1 —:71 i o= e
s Bt DA e
i=[8n]
or
n—1 1
bl ¥ B0 (34)

Observe that all the conditions of Theorem 3.2 are satisfied except the condition
(C3). In this case it is not guaranteed that all solutions of Eq.(1) oscillate. Indeed,
it is easy to see that the function u = n™ is a positive solution of Eq.(1).

As it has been mentioned above, it is an interesting problem to find new
sufficient conditions for the oscillation of all solutions of the delay difference
equation (1), in the case where neither (C}) nor (C5) is satisfied.

In 2008, Chatzarakis, Koplatadze and Stavroulakis [4] investigated for the
first time this question for Eq.(1) in the case of a general delay argument 7(n)
and derived the following theorem.

Theorem 3.3 ([4]) Assume thet 0 < a < 1. Then we have:
o I

hmsup Z p@U)>1-(1-vV1i-«a a) (3.5)

J=7(n}

then all solutions of Eq.(1) oscillate.
(IT) If in addition,

p(n) 21 —+v1—a for all large n, (3.6)
and
- 1-vV1I—«a
limsup (7)) > 1 —o—e—e— 3.7
n—CO J:TZ(??.) ( ) vV ]l -« ( )

then all solutions of Eq.(1) oscillate.



Recently, the above result was improved in [6] and [7] as follows:
Theorem 3.4 ([6]) (I) If 0<a <2 and

limsup Z p(j)>1—%(].—a— 1-2c)

n—0Q >
j=7(n)

then all solutions of Eq.(1) oscillate.
(1) If 0 < a<6—4v2 and in addition,

p(n) = g for all large n,

and

liﬁs;}p i p(j) > 1—;1(2—305—\/4—12-@—}—&2)

j={r)

then all solutions of Eq.(1) are oscillatory.

Theorem 3.5 ([7]) Assume that 0 < o < —1+ /2, and

lim sup i p(j) > 1——%(1—a—\/1_fm)
AR et

then all solutions of Eq.(1) oscillate.

Remark 3.3 Observe the following:
(i) When 0 < a < 1, it is easy to verify that

1—a_\/1——2a~a2> 1—«/1—a>1—a—\/1—
o
2 V1-o 2

(3.8)

(3.9)

(3.10)

(C4)

5 _
W Y

and therefore the condition (Cy) is weaker than the conditions (3.7), (3.8) and

(3.5).
(i) When 0 < @ < 6 — 4+/2, it is easy to show that

%(2—3a—m)>%(1—a—\/1—:m),

and therefore in this case and when (3.9) holds, inequality (3.10) improves the
inequality (Cs) and especially, when o = 6 — 4+/2 ~ 0.3431457, the lower bound

in (C4) is 0.8929094 while in (3.10) is 0.7573593.



4 Oscillation Criteria for Eq. (2)

In this section we study the second-order difference equation
Afz(n) + p(n)z(r(n)) =0 (2)

where Az(n) = z(n+1)—z(n), A* = AoA,p: N-R,, 7 : N> N, 7(n) < n-1
and lim, o 7(n) = +co.
In 1994, Wyrwinska [69] proved that all solutions of Eq. (2) are oscillatory if

m

timsup{ 3 () - Ap@) + () =2 3 o

— i=7(n) i=n+1

while, in 1997, Agarwal, Thandapani and Wong [1] proved that, in the special
case of the second-order difference equation with constant delay

2z(n) + p(n)z(n — k) =0, k>1 (2:)

all solutions are oscillatory if

lim in T (= KYpi) 2 2 (A i 1)k+1.

i=n—k

In 2001, Grzecorczyk and Werbowski [26] studied Eq.(2.) and proved that under
the following conditions

EIL” st —n+k+ Up(i)+
limsup{ + [(n —k=2)+ Z:‘__:l Y~ fc)zp(z)} x » > 1, for some n; > ng,
o X Zi:nﬂ p(z)
or
n—1 L\ FH ’
lﬂgf _Zﬂjk i—k—1)p(i) > (ﬁ) (Cy)

all solutions of Eq. (2.)'are oscillatory. Observe that the last condition (C)” may
be seen as the discrete analogue of the condition

t
1
litm inf /T(s)p(s)ds >
(t)
for Eq. (2.).

In 2001 Koplatadze [36] studied the oscillatory behaviour of all solutions to
the equation (2) with variable delay and established the following.
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Theorem 4.1 ([36]) Assume that

) o LA .
Hlf{-l )\hﬂg}lfn Zﬁp(t)‘?‘ (’&),)\E(O,l)}>1

B i=1
and N
liminfn=* Zep(z)q‘(z) > 0.
i=1
Then all solutions of Eq.(2) oscillate.
Corollary 4.1 ([36]) Let a >0 and

liminfn™" ) " i%p(i) > max {a*A(1 - A): A€ [0,1]} .

i=1

Then oll solutions of the equation
9 1
A?z(n) + p(n)z(jan]) =0, n>max{l,—p, neEN
[84

oscillate.

Corollary 4.2 ([36]) Let ng be an integer and
liminfn ™ znzizp(i) > 1
e i=1 4
Then all solutions of the equation
A2z(n) + p(n)z(n —ng) =0, n>max{l,ng+1}, neN

oscillate.

In 2002 Koplatadze, Kvinikadze and Stavroulakis [40] studied Eq.(2) and es-
tablished the following.

Theorem 4.2 ([40]) Assume that

liminf? = a € (0,00),
and -
lim infn Zp(z) > max {a* A1 —X): A€ [0,1]}. (4.1)

i=n

Then all solutions of Fq.(2) oscillate.

10



In the case where o = 1, the following discrete analogue of Hille’s well-known
oscillation theorem for 2nd order ordinary differential equations (see [29]) is de-
rived.

Theorem 4.3 ([40]) Let np be an integer and

e e

liminfn Zp(z') i

i=n

Then all solutions of the equation
Az(n) +p(n)z(n —no) =0, n>ny,

oscillate.

Remark 4.1 ({40]) As in case of ordinary differential equations, the constant
1/4 in (4.2) is optimal in the sense that the strict inequality cannot be replaced
by the nonstrict one. More than that, the same is true for the condition (4.1) as
well. To ascertain this, denote by c the right-hand side of (4.1), and by Ay the
point where the maximum is achieved. The sequence z(n) = n* obviously is a
nonoscillatory solution of the equation

Azsc(n) + p(n)z([an]) = 0,

where p(n) = —A%(n* )/[an]* and [o] denotes the integer part of o. It can be
easily calculated that

() c+ 1
n)=——-4+o(—=1] as n— co.
P n? n2

Hence for arbitrary € > 0, p(n) > (c—¢)/ n? for n € N, with ny € N sufficiently
large. Using the inequality > > i > n~! and the arbitrariness of e, we obtain

liminfn Zp(z) > 6
i=n

This limit can not be greater than ¢ by Theorem 4.2. Therefore it equals ¢ and
(4.1) is violated.
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H Sout| twv Bedtepwy Buixdv Kadold Addonaoctwy
Banach odyeBpdv xou ot dhyefpeg Sraywviwy telestdv

Avopsag Tolag
Tufua Madnuotixdy
Hovemothuo Avyaiou

Mn Tepiupévn didomooy evds yogou Banach X ovopdleton 0 yooghi X = Y & Z UE TOUC
Y, Z va ebvan anspobidotator. ‘Bvac areipodidotatos yhpoc Banach X Myetow abidonaotoc av
Sev emdéyetan pn tepppuévn Sidoraor. O X Aéyeta Kadohxd Addonaotoc {1 *hnpovouwd
addonaotog, Hereditarily Indecomposable, (H.I)] av xavévag arepodidotatos undywpedc Tou
Bev embéyeton un tepypévy Sdonaon. ‘Evee yopwernpioués twv H.L yopwy glvan o eZhg: O X
ebvon H.I av xan pévo av yie wdde Lelyoc Y, Z anepodidortatewy unoydewmy tou X xau yio x&ds
€ >0vumdpyouvy € Y, z€ Z e |yl = ||z = 1 dore ||y — 2|| <e.

H évvow opiore 1o 1992 oto dpipo twv W.T. Gowers ot B. Maurey [6] émou xataoneud-
GTNXE TO TOWHTO TUpdBELyla xGpoy ue auth T 1hiétnmo. Erione oto (Bio dgolpo Seiydnpe 6t yia
adde pryadied HI. yopo X, xdde gporyuévos ypopixde tekesthic T : X — X eivon e Lopenic
T =M+ S8yc)eCxu S éva strictly singular teheath. Autd el we ouvEnelr 6Tl Yo xdide
H.I. ydpo (mpayparnixd A muyodixd), o yopoc dev etvor LOOROPPOS HE Xavéva YVAOLO UTdywpd Tou.

Amb téte n xhdon v HoI ydpwv sou 1y Béon e péo ot Yewple TV ydpwv Banach éyzl
peretnlel extevie and tohhole epevntéc. Avawépoupe evBeting xdrow amoteAéopata. O W.T.
Gowers to 1996 oty replgnun Siyoropia tou, ([7]) anédeile 6u xdde ydpoc Banach neplEyel elte
evav undyweo pe unconditional Bdon A évav H.I. unéyweo. O . Apyupde to 2001 ([1]) éBaile
611 av dvag Baywpiaog yopog Banach neptéyet Lwwopoppxo avilypago xéde autoradole ywpou
téte mepiEyer (tov C0, 1] xon dpa) wwopopyind avtlypapo xéde Beywetoinou ydpou Banach. O .
Apyupde xen B. Pedoulic omédeiZay ([3], 2000) bt xéde ydpoc Banach repiéyel elte tov {4 (N) #
Evav undyweo mou elvan Ao evbs HL yopou. O T. Apyupde xeu 6. Peitxogroaine ([4], 2010)
- édafav o xde autorad g Siowptotog yopoc Banach etven TnAlxo evéc ovtoradois H.I. yapou.
‘Apa xdie autonadiic Sraywplowog xhdpog tepiéyeta o évay autonol addonacto ywpo. To 2004
([3]) xarooxeudotnxe and toug . Apyupd xon A. Téh o mpwToc un dwuywelowog H.I ydheoc.
Enlong, sevafl dihav, anobelydne 1 mhene Sigotopla v miixa H.L ydpwv. Luyxexpéva
av Z ehvon evag drywployog xdpo; Banach nou dev nepiéye tov &3 (N), t6te 0 Z eiva mniixo
evog H.L ydpou, Snhadi undpyer H.I. yopoc X xot tekeathc mnilxo (Bnh. ent) @ : X — Z xo
HehoTo 0 Z* nepiéyston oTov X w¢ SUUTANPLUATIXGS Undywpog. And TV HUTEOXEUT Tou, 0 X
€yl g boundedly complete Schauder faon (en)nen. Dty nepintiwon mou o Z €yer Schauder
Béom, o X* elven wwopopguxde ue o ewdi ddpoioua Z* @ X, érov X, = span{er : n € N} ebvan o
Eoduixdg Tov X xw elva emtong H.I. Sty nopoton epyasia da e€eTdoOVPE TL UTopoUlE EmiTAoy
v emtdyoupe v toug X., X, X* oty nepintwon mou o Suixée xweoc Z* éyer tn Bopr) Banach
dhyeBouc.

Oty X ebvan évag yidpog Banach pe Schauder Péon (en)nen, évoc PEOYUEVOS YoOUUIXAS
wheothc T 0 X — X da Myeton Saydviog, av umdpyer (A, )nen oaxoroudio Baduwtav, dote
T(en) = Anen Yiaxdde n € N. Me Lying(X) oupBorilouye tnv SAYEREU TWV QRUYUEVWV YRV
teheotdv T : X — X nou elvar Bravdovon. YupPohiCovpe pe €, tov Slaymvio TENEOT By = €] Re,,



dnhad to Baydvio terEoTh B, ¢ X — X mou oplleter and tov tino &, }: Aie;) = Apen. O 2.

Apyupde, E. Aehnyidvvy xon A. Tohog anéderfav 1o effg: Av X eww }(o;poq Banach pe o
vopuapopévn uovotovn Schauder Bdon (en)nen xor Cy, Ca > 0, ta axdhoula eivar 1oobhvoua:
(1) O tereotic

¢ . X*

* £d1.’,\t l-’s()

oo
A *
P )\nﬁ‘.] L "\Tl En

n=1 n=1
glvar ®oAd opiopévag enl xou twoopopploude,
we Cr- = 1R(NN £ Co - ] yowxdde f € X~
(H obyxhion g oeipdg otov X* hopBévetar we mpog v w* tororoyia, evd) otov Lajas(X) oc
pog TV strong onczator topology)
(2) (2a) C; | L il < ] L i elﬂ yie xdde noe Nt iy, -+ g € R,

i=1

(28) IiZaade 1<Co | S aesll- I 3 Biell
t=1

i=1 =
(3) T'TC{Q)(EL c_VCt norming obvoro K tou X doze:

(3at) xC Z el € K vy xdde n.
i=1
(3) K-KcC (- By-
min{n,m}

T e
(Brhoav D asel, S Gef e K toe || Y. afiel]l £ Ca).
i= i=1 i=1
Me yprion Tou Jewpripatog autol emtelydnxe 1 xataoxevs pog dhyePpac Saywviny teheotdv
ent evég ywpov Banach X pe Béorn (en)nen, dote 1 dhyefpa Biaywviny Terectdv Liiag(X) va
ebven (oopetpua] g dhyveBpoag X o) H.L
Eny napobou epyacio eZetdloupe ) Souf wwy dedtepwy Suixev H.I Banach ahyefpdv. [ho
ouyxexpuéva éyouye to efrig dedprdo.

yiaexéden € Nxeway, 3, ,an,53, € R.

Oezwpnpa 1. Eotw Z évag ydpos Banach mou wavorowl T edig:

(1) O Z éxer o vopuopiopuévn Bipovédtovn Béorn Schauder (2;)ien. Ou cupPorilovys ue (27 )ien
T Bopdoydvie cuvaptrooedt] g Bdang outic.

(i) O Z* ebvon Banach aAyeBpa mc rpoc To xotd orusio ywépsva Anhedd av f,g € 2%,
f=aw* L Aizf, g = wt — Z Hizl Téte N ompd f - g = E Aips 7 ouyrhivel oty w*
i=1
z- < i flizs - lgllz-.

(i) O Z Bev nepiéyel wopoppued tov £1(N).

toroloyiu caov Z* xau || f - gl

Tote vndpye ¢vag yopog Banach X ue boundedly complete Schauder Béon (e, )nen Gote
(a) O X eiver H.I. ydpos.

(B) O X. = spanfe;, : n € N}, nou elven npoduixée tou X, eivar H.I. Banach éhyefpa (e 1o
watd onuelo ywouevo we npog Y (&5 )nen)-

(v) Yrdpyer teheotic @ : X — Z ent xon pédhioto 0 X* elvon toopoppuxde ue o eudl dpoloua
VARSD. 08

Av emimhéov unodeooupe 6T 1) Bhon (2;)ien elvar uroouppeTEi, T61e 0 X pnopel va emheyel
thote v toyel emhéov To elfc



(8) O X etven 1wopoppuxée e to ydpo Biaywviny teheotdv Lying(X). Te auth v replntoon
(Xa)™ = X* = Laiag(X) pe myv dryefeu auth va eivon wopopen ™ £* & X. A e
Z* @ span{xn} ® X,.
Lriaypdonon tng anébaéng. Qewpolpe L = (A;)ien pa Sapéoion tou N ot dnelpa ohvoha Opi-
Louue

;
H
G = {D axemn, & €Q i=1,...,d

ES
d
¥ ' P 3
E wer. Swdotnpe tou N, E a;z || < 1}
i=1
xat G£ , = GEU{2xe : E ren. Sudotne tou N} Ta obvoha outd efvon xhelotd ot xatd oryelo

Yivoueva. ‘
Qewpoiie Toug yupovs Yz = (cgo(N), || ”(:5) wo ¥y 7 = (epn{N), ||

ac ). ArodeucvleTan éTl
1.z

elven urooLUETEL} TéTE oUTE 0 BedtEpog
uoha G xer Y i va oupBolicouue elte

0 mpwtog Bev mepiéyet tov €1 (N) evd av 1 fdor) (2:)ien
nepieyel tov £ {N). Xpnowonowiye oo tapedte: T ol
Ta Gz xou ¥z ) wa Gy z xen Y7,z avtiotoyo.

Ané éva amotéheopa Tou Bourgain mpoxtntel dmt UndpyEL SlTuxTog € < w) QoTE 0 ¥ Bev
nepiéyet €5 spreading model. Tha auté o £ omoBewcvieTtar 6T 10 G elvon S¢ bounded (BX. [5]).
Erheyovrag xatdhhnhn yvnolag adfovoa axohoudia aprdunciuwmy Bty (§i)jem ue & =
xou xotahhnay ywnolwe abfouca axoloudia guomdv (m;)jen, o yopog X opiletar var elven )
mATpwan tou ydpou {coa(N), || [p), 6mov 0 civoro D siven 10 ghdyioTo unoshvole Tou oo (N)
Yl TO omolo

() GcD.

(ii) To D civan hewotd ovic (Se,,, --2) npdleic.

5257 g
(iti) To D eivon sdeioté auic (Sg,,_,, ?n?if]‘) TpdZewc rbvey ge 25 — 1 special axohoutiec.
(iv) To D eivar 3heoté otouc pnrols xuptols ouvBuasiolc.
(v) To D eiven xherot6 otat xatd ovusio ywvdyeva.
(vi) To D elvar xhewotd oroug mEpioptopolc Ge Naothuara tou N,

‘Eyovtag opiost tov X pe onueilo dvaping 1o G = G%, arodenevietar du 1) avTigTolynon,
Qen) = 2z brav n € A; enexteivetan oe éva pparypévo Yeouxo tehecth) and o X enl tou Z wo
0 X7 ebvan 10bpoppog e tov X, @ Z*. O X xau o X, amoBenevieton 6t eiven H.I, eved Aoy ToU
0 norming cuvoko I elver xAeto16 ota xatd onpslo ywvopeva endyel otov X, xor otov X* Sour
Banach éhyefpac.

Yiny replntwon mov 1 Béon (2 lien elva LROGUUUETEWXA Xon ExovTag Eexwvioel Ty xoTaoxeun

T
and 0 G = G£,, t61€ 0 norming civoro D du TEPIEYEL Ta oLVapTNooad £ 3 27 yia xdde

i=1
n € N. Erol olpgova ye 1o dedenua tou [2] nou mpoavagépaue, o X* civa LOOUOPPIKOS |UE TO
X0p0 Byeviwy 1eheatdv Liiag(X). ‘Etol, oe auth tnv neplntwon (X.)™ = X* = Liag(X)
xou ) dhyefpa aut etven woépoppn e Z* @ X. eixe g Z* @ span{xn} @ X.. H Bidxpron twv
Blo autdv teputtdocwy ogelheta oo effic yeyovic. Adyw ™6 xatdoxsung Tou o X* nepidyel To
oc

Xn = w* — 3 zf. Ané v dA\hn o Z* evdéyeton vat To nepieyer (mpddtn meplntwon) A ver pnv to
i=1

TEPLEYEL (szgepn neplTwaon). O
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loomhevpind chvora oe anelpodidotatoug
¥wpouc Banach

[dpyog Boaouheiddng

Optopog 1. Eotw yopog (X, || - |} pe vopua xon A > 0. Eva § € X ovopd-
Cetan A-gomhenpixd olvoro av eivay |]'1: —yll=AV2,ye S,z #£y.

2€ Y ©pouC e vopua terepaopévng didotaong éxet Sodel o axbhoulog opt-
opde, Tov onoio Xl yevixeboupe:

X ovoudletot

Opwopoe 2. FBotw (X, | - |]) ydpoc pe vépua. ‘Eva § C
< fly) nar flz) <

avurodixbd av Vz,y € S,x # y undpyet f € X* : f(z)
J(z) < Jy)vz € S,

Eivow yvwoté and toug Danzer xou Griinbaum 61 N peytoty mindudtnta
evdg avTimodixol cuvéhou S otov R™ efvar 2™ xou cwtq EMITUYYAVETAL PbVO
oty nepinTwon 6mou 10 S eival 10 GUVOAD TWY XOPUEGOY EVES 1- BidoTerton -
paAAnidtonou.

To anotéheopa nou axohoudel arobetydnye and 1o (C.M.Petty) yi -
pouc menepaouévng didotaoyg:

Hpétaon. Eoww (X, | - ||) xdpos pe vdppa xar S C X womeupicd oivoro.
Tdte to S eivar aruirodud.

- Arddeién. ‘Eotw z,y € S, 2 # y. Tnom‘}sroups 6t to S efvar A-ioomheupixd.
Ané to Oevprue Hahn-Banach urdpyer f € X*,||/]] = 1 dote

fy—z)=|y—=zl]|=A>0.

Téte f(z) < fly) xu f(y) = sup{f(z) z € B(z,\)}. Apa 1o f elvo
ouvaptnooedéc othpiEne e B(z, ) oto y xau f(2) < f(y)Vz € S.
Enlonc yio g = — f éyoupe

gz =y)=JSly—2)=lly -z >0



xat |lg|] = 1, ondte mapduow o g elvon cuvaptnoosdéc othpiing g By, A)
oto x xat g{z) < g(z)Vz € S.
‘Apa f(z) < f(z) < [{y)¥z € § xou To chvoho S ival avTimodixd. O

Qewpnpa. (C.M.Petty)

FEotw (X, | - ||) xdpos ue vippa merepaopérng didoraong kar S C X avuno-
d1d ovwodo. Tére undpyer wodvvapn vipua ||| - ||| ovov X, dote to S va eivar
wordevpid otroro avor (X, ||| - 1]])-

Ou yevixeboouue to Qedpnua v C.M.Petty oe anepodidotatoug yopove.

Opopoe 3. Fow (X, || |]) xopoc e voppa. Bva S C X ovoudletar goayué-
vo 3ot Braywplopévo avtinodixd chvoho, av undpyouy otatepés ¢, d > 0 wate:
(i} .8 C-B{0, v

(ii) Va,y € S,z # y undpyer f € By dote 0 < d < f(y) — f(z) xu
[(z) £ [(2z) £ f{ly)Vz € S.

[apatnprioes. 1. Kéde womienpnd ohvoro oe ywpo pe vépua elivon ppoy-

[\

HEVO ot Bywplopévo avtinodixd abvolo.

. "Bva Boploywvio ovotua (z.,2,*) € X x X* og ydpo pe vpua divel

avTinodixd cOvolo.
Hpdypatt, 16TE £YOURE:

*'.«-,. poure A oy
"L"fl [‘.l,-i.z) = ()71’72 V'}’l, Yo = F
Av vy £ yelva

0= 2y, (245) < Ty7(2y) < 24" (21,) = 1Vy €T

‘Eoto {z,; f,} éva ppaypévo Bopdoydvio obotnua otov X, dnh. undpyet
M > 0 dote

flzy b Il < My el
Mropt té1e va éow gy = #:H—,'y € lxony, =2,-||f4]],7 € T ondte 10
diopoywwvio adotnua {iy; gy} Biver {yy yer pporyuévo xon Sywpiopévo
avTinodixd chvoro.

i



Oewpnpa. Eotw (X, ||-||) xdpos e vépua ka1 S € X gpayuévo xai iaywpi-

opévo avTmodid alvodo. Tdre urdpyer woddvaun vépua ||| - ||| otov X, dote
to S va eivai wondeupid ovvoro oror (X, ||| - |]]).
(Av o1 otalepés wou S elvar ¢, d téte 1) Banach-Mazur aréoraon twv 6o vop-

v efvar < %‘
Anédatn. Oérouue
K=conv(d-B,U{z —y:2,y € S}).

To K ebvat xheioté (ppayuévo), xLatd o ouppetpied covoho pe 0 € int(K),
EMOUEVLG TO ouvaptnooebéc Minkowski opiCer wa vopuo

lz]lx = inf{\ > 0:2 € AK}

xau 7 undha tou yopou (X, || - ||x) elvon axpBoc to olvoho K. Tw z,y €
S,z # y undpyer f € By wote:

d < f(y) — fl2) < Ifllllz —yll < 2c

emopévie d- By € K C 2¢- By xou éretanr 611 n Banach-Mazur anéotaon twy
600 vopumy eivar < %.

Apxel topa vo delfoupe 6t ov z,y € Spe x # y ez —y € 9K <
lz — yllx = 1 (emopévag to S elvor 1-ioomhevpind ot | - |4 ).

‘Boww howmdy z,y € S pe 2 #y. Téte undpyer f € By pe d < [ly) — filz)
xat f(z) < f(z) < f(y)Vz € 5.

Téte yia 21,29 € S elvan

f(zl - 32) < f(?J - 1)

Erlonc av z € d- By, 16te

FE <@ <zl <d < fly—2)

xat &pa to f elvar ouvaptnooeéc otipiEng Tov K oo onuelo y — x, CUVETEG
y—x € K. O

IMépwpa. Eotw {z.; fr} éva ppeypévo Sopdoydivio olotnua orov (X, || - ||)
pe |5l = 1.y € T kat flz, || < ¢,y € T. Tére undpyer wodvaun vépua ||| - |||
otov X e Banach-Mazur aréotaon and tny apyicii < 2c (¢ > 1), dote o
owolo {z : v € I'} va etvar I-wwomevpid oov (X, ||| - ||])-

1



Auté To ancdeie o K.J.Swanepoel oty nepintwon drov o yopog v
Breeywplowog, 7 xipvovtac_ 10odOvapn vépua pe Banach-Mazur andotacy and
v apy <24 ¢.

F I z - .
Xpﬂmyono'uvms (ot Bywelown reglntwon) éva anotéreopa tou Day Yo
/

v Omapdy) dretpou aprBurioiiov Aumbam CUCTAUNTOS, UTOPOUUE VoL TEQOUUE
wwodUvoun voppa ue Banach-Mazur andotaon < 2 and tyy cpyu).

Hapatrpnon. Av (X - ) mepiéy et oopopud tov ¢! A tov ¢, ToTE VE > 0
Unétp)(_ea HAELTTOC /{wooq Y tou X xon woobivaun vopua otov Y dote:

) Aol VI < 14 e

(i) O (Y, ||} - | 'ECPIE.")(E'. AmERO 1WOTheLpiNS Thvolo.

Avuto m)pﬁotw., Aoy g iBéTTAC THG Un-Taod (3p sworg (distortion) tne vop—
pog tou ¢p xat tou ¢ (o yo)pog Yo mepieyer avtituna tou o 1) Tov £ pe pixpt
Banach-Mazur andataoyn and v apyno] véppa).

E
\,
PN

Hapazrpnon. Trépyouv xhdoeig un Bayepicpwy yoewy Banach ot onolo
exouv dogoydvia cuoThuata:

L. Ot WCG ypot xat o yevixeloelC Toug (ndhioTa £youy M-Bdoeig)

2. Ot yapor mou eivan representable (m.y. ot duixol Blaywpicipwy ybpwy
Banach, o1 onolol dev etvar Sy wploior)

3. Av o X efvan un Braywpioog ybeog Banach xou efvor tobpoppoc ue duind
wpo Banach, téte 8éyeton unepoprdurowo dopdoyidvio chotnuo.
) PR il

Lnuetwvouye 8t eivan ouvenée oty ZFC va unodéocoupe 6t xdde un Bia-

‘.

ywelowog yopoc Banach 8éyetan unepuprduriowo BfopﬂoYtowo oLoTNUA.
‘TEotw K ocuvurayfic xar Hausdorfl tornohoyixdg xopoc. M cuveyc ou-

vépmon [ 1 K — [0,1] Aéyeta ouvdptnon Urysohn, av f~1({0}) # 0 xa
Fi{n 2 e

Av A, B # 0 xheiotd xon Eéva unoovora tou K téte undpyet (amd to Afuuet

Urysohn) e guvdptnon Urysohn'f : K — [0,1] ue f/ A = 1 xat f/B = 0.

A\J emnAéov ta A, B elvar Gig O'U\-J?\Ot TOTE Lndpyer ouvdptnon Urysohn ue

H{1}) = A xen f71({0}) =
Hapaztnpioer. 1. "Evog ouprayvc ydpoc K elvou xhnpovound Lindelof av
xe wovo av eivan perfectly normal (t1oodOvopa xdde xielotéd LTOGHVORS

tou elvar Gy-oOvolo).

v



2. 'Boww K ouunayifg ydeog xat f, g ouvapticec Urysohn. Tdéte efvou:
[/ = glleo <1 e

I/ = gllo = 1 & fTH{1) Ng™'({0}) # 0 4 g7 ({1}) N /71 ({0}) # 0.

OpiCoupe oxolotdwe uio aotevh Evvola aveZapnoluc:

Opiouse 4. Eotw § éva o0voho xa (Aq, Ba)aer o 01xoYEVELD [N XEVOY
UROoLVOALY oL S doTe: '

(i) AaNBa =0, € T naxt

(i) Va,b € Ta # b oyle elte Ao N By# 0 A AyN By # 0.

Afupa. Foww K ouurayis xar Hausdor[f toroloyds ydépos ka1 F C C(K)
pa oioyévela ovvaptioewy Urysohn. Ta axddovda efvar 1wodUvaua:

1. To gbvodo F eivar workevpixd atov (C{K), | - lle) (BrA. |If — gl =

2. H omroyévea Gévwr rdeiotav owdav (fH{1}), F71{0))) efvar ave-
EdptnTn”

Lpdraon. Eotw K ouunayrs kat Housdorff tornodoyiicds xipos kat (Ae, Ba)aer
paa ‘evefdprnTn’ owkoyévela kAaotdy uroowrdder tou K. Ocwpotue ya

o € A ua ovvdption Urysohn f, + K — (0,1) e fo/Ae = 1 ka1 f, /By = 0.
Téve n owcoyéveia guvaptijocwy {fo : a € A} eivar worevpixr orov C(K).

Eow K ovprayic xou Hausdorff torohoyinds ydpooc xar C L0 OIXOYEVELY.
AVOIXTOV-XAEITTEY UTooUVOAWY tov K pe B # A # K,YA € C. Téte 7 ot-
noyévewr {(A, K\ A) : A € C} eivon “aveZdptntn’ xon enouévwe 7 OIXOYEVELX
ouvoptAcewY {fa = xa : A € C} elvon womhevpixs) otov C/(K).

Hépwopa. Eotw K ouurayrs war Housdorff, ohixd jn ouverxtixds X®pPOS.
Tdre vrdpyer wwomevpucd atvodo F C C(K) ue | F| = w(K).
(F={xv:VCK,VeB))

Optopog 5. M owoyévewd {2, @ o0 < w;} otov Tonohoyixd ywpo X ovoud-
Cetou
bedid Soywpiopévn, av 2, ¢ {23 a < 8 < w}, Va < w.




Hpdtao. Brag torodoyixds yapos X eivar kAnpovounkd Lindeldf av rai pd-
vo av o X dev mepiéyer Oelid Daywpiouévn otkoyévera.

Hpétaoy. ‘Eoww K ovureyns xai Hausdorff tomodoyucds ydpos, o omolog
dev efvar kknpovopd Lindeldf. Tite o (C(K), | - leo) mepiéyer vrepapiiuno-
MO 100TACUp1KG oTUVOAO.

Arédealn. 'Bow {l, : @ < w} € K wa delid doywpiopévy owxcoyévela.

©étouye

Ho = {tcx} Bl = {15_5 ser e B % wl}

pe Ho N Fy = Vo < wy non yiw o < B < wy elvan by € Fl,. H ownoyévew
(Hoo Fo)acw elvan “aveldpmuy.

O

Ipovaon. Eorw K ouurayrs kar Housdorff toroloyixds xdpos, o orofog
dev efvar kAnpovopuxd daywpioios. Tdve o C(K) repiéyer vrepapipijoijo
100TAEUPIKO OUrOAO.

Andbeidn. Trapyer pia otxoYEVeElD (ta)ncw, OPIOTERY Sty wotouévn xoit YETou-
ME:
Fo={lp: B < a},a<w xhewtd, unxevd e tp € I, 3 < a
xa 1) oxoYeveld ({tat, Fa)acw, iven aveldptner.
EI

Ipoétaom. Av X un Sigywpioipos ydpos, wdre i urdda tou X* (Bx., w*) Sev
etvar kAnpovopuxd Lindeldf kai emouévos o ydpos Banach C(Bx-) mepiéye
vrepap1unoio 10omdeupixd otvodo.

vi



Epmr'ﬁ,pam{:

L. "Eotww o yopog (C(K). | - [le); K ouuroyhs xat un petpixonomiooc.
Trdpyet S C C(K) worheupixd oOvoro o1 || - loo;

2. Trdpyer yopog (X, ||+ le) un Sroywptoioc, Gote xéde avtimodins, poay-
HEVO Xt By wplopévo oivolo efval To Told aprduroio;

vil





